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ABSTRACT: In this paper, we use the fractional g-Integrals on a specific time scales to generate some new inequalities of
Gruss type. For this paper, some classical results can be deduced as some special case.
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1 INTRODUCTION

In 1935, G. Gruss [1] proved the following classical integral inequality:

Pl () g () dr = (710 (x)dx) (5 flg (v)dx) < =22 (1)

provided that [ and g are two integrable functionson [a,b] and satisfying the conditions

p<fW<O, y<g()<Y: 0.4 ¥y eRrelab] (2)
In [2], Dragomir proved that:

IT(f.8.p) IS @D (o) (3)

where:
T(f.g.p)=[p(x)dx].p(x)f (x) g (x)dx—([.p(x) £ (x)dx )([p(x)g (x)dx) (4)

and p is a positive function on [a,b], and f and g are two integrable functions on [a,b] satisfying (2)

In the case of fractional integrals [3], G. Anastassiou established another fractional integral inequality of Gruss type. Other
papers dealing with various generalizations related to the Riemann-Liouville fractional integrals and to the ¢ -fractional

integrals have appeared in the literature. For more details, we refer the reader to ([4], [5], [6], [7]).
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In this paper, we use the fractional g -integrals on time scales to establish new inequalities related to (1) and (3). Our
results have some relationships with those obtained in ([5], [6]) and mentioned above. For these results, Theorem 3.1 of [4]
can be deduced as a particular case.

2 NOTATIONS AND PRELIMINARIES

We give a summary of the mathematical notations and definitions used in this paper. For more details, one can consult
[8]. Let 7, € R. We define:
T ={t:t=tq",neN}U{0},0<g<1 (5)

ty

Forafunction f : T, — R,the V g-derivative of [ is:

fa-1@ ()

v

Forall t € T /{0} andits Vq -integral is defined by:
[r@ve=a-a1Yqrw) ()
i=0
The fundamental theorem of calculus applies to the g -derivative and ¢ -integral. In particular, we have:

v [ r@ve=r@0  (8)

If f iscontinuous at 0, then:
[V, f@ve=r0-1© (9)

Let 7, , T, denote two time scales. Let f* : 7, — R becontinuouslet g : 7, — T, be g -differentiable, strictly

increasing, and g(0) =0.Thenfor b 7, , we have:

[lrov,e@ve=["(fog Vs (10)

The ¢ -factorial function is defined as follows:

If n is a positive integer, then:
(t—5)" = (t—s)t—gs)(t — g*s)..(t—q""s) (1 1)

If n is not a positive integer, then:

(n) 1-(¢ )61
= I I 12
t 1 ( ) n+k ( )

The ¢ -derivative of the g -factorial function with respect to 7 is:

V(5" = 11 - (13)

q
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And the g -derivative of the g-factorial function with respect to § is:

n

n 1- "
Vq(t—s)u =—1—q(t—qs)u (14)

The g -exponential function is defined as:

e,(t)= ﬁ(l —¢'t),e,(0)=1 (15)

The fractional ¢ -integral operator of order a >0, for a function f is defined as:

V, (0=t —g) T @)V a>0t>0  (16)

Where: T, (a)=L[,(2) e, (qu)Vu

3 MAIN RESULTS

Our first result is the following theorem. This result can be found in [4]. Here, we propose another method to prove it.

THEOREM 3.1: Let f and g be two integrable functions on [0, 00[ satisfying the condition (2) on [0,0[ andlet p bea
positive function on [0, o0[. Then for all t >0, > 0, we have:

D - v, P
[V POV, 2=V, o OV, pe(0)] €| == | (@=g)(¥=y) (17)
PROOF: Let us consider the quantity:
H(z,p)=(f()~ f(P))g(z)-g(p)); 7, p(0,0)  (18)
It is easy to see that:

o[ a0 (1) p(p)H (7, p)V IV p = 2V, p()V,° pfa(t) — 2V, pf ()V,“ pe(t)  (19)

2
0-0 L2 (a)

Thanks to the weighted Cauchy Schwartz integral inequality, we can write:

1 (/_ g )] 2
(i ey p()H . o)V Y|

I (a)

<[ () p(p)(f (7) — f(p)) VeV (20)

0 (@)

ol G p@)p(P)NE(@) ~g(P) VIV

L $A (9]
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Using (16) we can develop the right hand side of (20) as follows:
oy = p@ () (D)= S (P VIVp =2V p(OV, pf* () =2V “pf ) (21)
And:

s S p@)p (P& (D) = g(P) VIV p =2V p(V 1 pg* () -2V, pg (1)’ (22)
Thanks to (19) (21) and (22) we can write (20) as follows:

(V" POV, pfe(0)~V,” pf ()Y, pg (1))

(23)
<(V, POV, o=V, pf O )(V,“ POV, pg* ()~ (V,“ pg (1))’

On the other hand, we have:

(@p(p) = f(PIP(P))( (D) f () =$p(D)) +(Pp(z) = £ (2) p(2))(P(P) [ (P) = ¢P(P))
—p(D) (@~ f(D)(f(@)=4)p(P) =~ p(P) (P~ f(P))(f(P)~¢) p(7) (24)
=p(p)f* (@) p(0)+ p(0) f*(P)p(p) = 2p(2) f(2) f(P)P(P)

Which implies that:
(Pp(p) - (L) P(P))(V,” PO~V (1) + (DY, p(1) =V, f(O)p(®) ) P(P)f (P) — $P(P))

—p(P)V, (p(O)@ = FO)S () =4))— p(p) (P f(P)(f(P)~4)V,“P(1) (25)
=p(P)V, OO+ p(p) 2 (PIV, p(t) =2p(P) f(PIV," (f (D) p(D))

a-1

(t—qp)
Now, multiplying both sides of (25) by “T,(@) ;5 PE (0,#) and integrating the resulting identity with respect to p

over (0,7), we have:

(v: 2 -9, 50 Y1525 (Pp(o) - £ (2102 )V
H(@V, 20 - £ Op0 ) 525 (201 £ (0) - #p(p) )V

v, (pO@ - FONO-) )1, 25 p(pVp (26)
=V, O 25 p(p)@ ~ (P ()~ $)V
=V pOV, pf (O +V [ pf *(OV," p(t) =2V pf OV, pf (1)

Which gives:
v, 0V, o0~ (V, )
=(v,p0-9, 0 ) (V0 -9v, 00 (27)
v,V (@=r X0 -9)p0))
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Applying (27) with g = f* we obtain:

V., p(OV , pg*(t) - (V;”‘pg(t))2

(28)
= (99,00 -, 55 ) (v, &) -7, p(0) ¥, p0)7,* (¥ = 20N -1)p(0))

Since:

-V, 0V, (@= FO) SO -9)p®)) <0

And:

v, )V, (- g0 -p)p®) ) <0

Then we have respectively:

v, oV, o 0 (Y, O )
(29)
<(@v,7p0) -V, ) (v, o -9, p(0))
And:

v, pV, pg’ 0 -(V, e’
(30)
<(¥9,°00-,pe ) (v, 20 ~7,7p (1))

Now using (29) and (30) we can estimate the inequality (23) as follows:

(VPO e =V, OV, p®) )
(v, p0-v, o 0 )(V pr0-9v,7p0)  (31)
(¥, p0) -V, pe ) (v, pe -y, 1))

By the inequality 47s < (r +5)°,7,5 € R, we obtain:

W ov, 50 -, 2 0) (V. 097,70 ) < (@-pv, p0 ) (32)
And:
4w, 0 -, pe ) (v, pe -9, ) < (2 -0 20O (3)

Thanks to (31) (32) and (33) we obtain (17).
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Our second result is the following theorem in which we generalize Theorem 3.1 of [4].

THEOREM 3.2: Let f and g be two integrable functions on [0, 00[ satisfying the condition (2) on [0,o0[ andlet p bea
positive function on [0, 00[. Then forall t >0, > 0, f > 0, we have:

(V27 POV pfe))+ V7 OV, pfa(0) =V pf (O pg0) =V pf 00V pg(1) )
< [(@Vﬁp(f) -V 0) (Vo 0=V, p0))
+(V;pf<r>—cov;p(r>)(<w/p(r>—szaf(r)ﬂ
x[(w;pm—V;pfm)(V/pf(r)—wfp(n)
+(v;pf(r>—wv;p(r>)(W/p(r>—V/pfm)}

=) (1—g pYP2
Proof: Multiplying (18) by % p(@)p(p); 7,0 <(0,t), integrating the resulting identity with respectto 7

and p over (0, l‘)2 , then applying the Cauchy-Schwarz inequality for double integrals, we obtain:

(7, POV, D)+ ¥, OV, P =V, PO, pe()) =V, pf OV, pg) )
(V. POV B O+, POV, B (0-2V, B O 2 ©)) (33)

(V2 POV, b 049, PO, p* (-2, pOV, p2))

_ap)?!
Multiplying both sides of (25) by (lr(jf/),) ; P€(0,¢) and integrating the resulting identity with respect to p from 0

to #, we have:

VS of 0=, p0) ) 5 p(o) (@ - f(p) )Vp
( ) (o-7)

+(cDV;“ p()-V, pf(t ))I 0 (t}fff p(p)(f (p)- ¢)V'O

v, (@ FOS O - P )y 52 p(p)Vp (36)

v, 022 pp)(@ - 1)) (1)~ 4)vp
=V p(OV, pf* () +V, pf*(OV,” p(t) -2V pf (OV,” pf (t)
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Therefore,
V. pOV pf 0+ V. p(OV, pf* (1) -2V, pf )V, pf (1)

= (0%, 000 -, or O ), )= 97,7 p(1))

N A ORA0) | CAAGR P 0) 7

v, p0, (@= FON S ©-8)p0) -V, p07, (@ = FO) SO -hp(1))
Applying (37) with g = f* we obtain:

V. pV, pg* )+ V. p(t)V, pg’ (1) -2V, pg(1)V,” pg(t)

= (29,00 -, e ) (v," )~ 97,7 (1)) -

Hwv, 00 -, pe® ) (v, e -49," ()
v, 0, (¥ - gONeO-p)p®) ) -V, eV, (¥ - O -w)p())

Since (D= f())(f(x)—¢)=0 and (¥ —g(x))(g(x)—w)=0, then can write:

=V, p0V ! (@ = FO) S0 - 9p®) -V, p0)V (@ = FON SO -p)p) <0 (39)

And:

v, v, (7 - g0 -)p®) ) -V, )7, (¥ - 2N -p)p®) ) <0 (40)
Consequently,
VA pOV, pf*(0)+ V., p(OV , pf* () -2V, pf (OV,” pf (1)
(v, 000 -, r 0 ) (7, - 97,7 p(0)) (41)

Hov, -V, pr 0 ) (Vo -7, p(0))
And:

V. p(OV . pg? () +V," p()V," pg* (1) =2V pg()V,” pg (1)
<(2, 00 -, e ) (v, e~ v7," (1)) (42)
H(09,7 0=, 20 ) (V. e -w¥, )
Thanks to (41) (42) and (35), we obtain (34).
REMARK: 1. Applying Theorem 3.2 for & = [3 we obtain Theorem 3.1

2. Applying Theorem 3.2 for ot = [3 we obtain Theorem 3.1 of [4] on [0,1],¢ > 0.
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