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ABSTRACT: In this paper we analyze the combine influence of radiation and dissipation on the convective heat and mass 
transfer flow of a viscous fluid through a porous medium in a rectangular cavity using Darcy model. Making use of the 
incompressibility the governing non-linear coupled equations for the momentum, energy and diffusion are derived in terms 
of the non-dimensional stream function, temperature and concentration. The Galerkin finite element analysis with linear 
triangular elements is used to obtain the Global stiffness matrices for the values of stream function, temperature and 
concentration. These coupled matrices are solved using iterative procedure and expressions for the stream function, 
temperature and concentration are obtained as linear combinations of the shape functions. The behavior of temperature, 
concentration, Nusselt number and Sherwood number are discussed computationally for different values of the governing 

Parameters Ra, , N, N1, Sc, S0 and Ec.  
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1 INTRODUCTION 

The study of heat transfer and mixed convection flow in porous medium enclosures of various shapes has received much 
attention [1]-[5]. Interest in these natural convection flow and heat transfer in porous medium has been motivated by a 
broad range of applications, including Geothermal systems, Crude oil production, storage of Nuclear waste materials, ground 
water pollution, fiber and granular insulations. solidification of castings, etc. In a wide range of such problems, the physical 
system can be modeled as a two-dimensional rectangular enclosure withy vertical walls held at different temperatures and 
the connecting horizontal walls considered adiabatic. Convective heat transfer in a Rectangular porous duct whose vertical 
walls are maintained at two different temperatures and horizontal walls insulated, is a problem which has received attention 
by many investigators [6]-[13] some of these works includes numerical results by a few authors [5], [14]-[23]. 

The investigation of heat transfer in enclosures containing porous media began with the experimental work of Verschoor 
and Greebler [24]. Verschoor and Greebler [24] were followed by several other investigators interested in porous media heat 
transfer in rectangular enclosures [12]-[13], [25]-[26]. In particular Bankvall [1]-[2], [27] has published a great deal of practical 
work concerning heat transfer by natural convection in rectangular enclosures completely filled with porous media. Burns, 
Chow-and Tien [28] have described a porous medium heat transfer flow in a rectangular geometry. Cheng et. al. [16] have 
studied the flow and heat transfer rate in a rectangular box with solid walls using a Brinkman model the box is differentially 
heated in the horizontal direction. Chen et. al. [17] have considered enclosures with aspect ratio greater than or equal to 
one. Their numerical computations indicate that when Darcy  number based on the width of the enclosures is less than 10-9

, 
Darcy’s law and the Brinkman equation virtually the same results for the heat transfer rate. Joseph et. al., [19] have 
considered laminar forced convection in rectangular channels with unequal heat addition on adjacent sides. Teomann Ay Han 
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et. al., [29] have considered heat transfer and flow structure in a rectangular channel with wing-type Vortex Generator.  
Han-Chieh Chiu et. al., [30] have discussed mixed convection heat transfer in horizontal rectangular ducts with radiation 
effects. Chitti Babu et. al., [31] has discussed convective flow in a porous rectangular duct with differentially heated side wall 
using Brinkman model. 

When heat and mass transfer occur simultaneously, it leads to complex fluid motion called double-diffusive convection. 
Double-diffusion occurs in a wide range of scientific fields such as oceanography, astrophysics, geology, biology and chemical 
processes. Ostrich [32] and Viskanta et. al., [33] reported complete reviews on the subject. Bejan [14] reported fundamental 
study of scale analysis relative to heat and mass transfer with in cavities submitted to horizontal combined and pure 
temperature and concentration gradients. Kamotain et. al., [21] have conducted experiments on mass transfer and flow 
pattern in shallow enclosures [H\L = 0, 13-0.55] filled with a fluid [Pr = 7, Sc = 2100] in cases where the combined buoyancy 
effect is dominated by the  buoyancy due to concentration gradient. Other experimental studies dealing with thermo solutal 
convection in rectangular enclosures were reported by Ostrach et. al., [32] and Lee et. al., [34]. Lee and Hyun [34] and Hyun 
and Lee [35] reported numerical solutions for unsteady double-diffusive convection in a rectangular enclosure with aiding 
and opposing temperature and concentration gradients that were in good agreement with reported experimental results. 
The most recent review of this activity is the one published by Viskanta et. al., [33]. Who stress that the two requirements for 
the occurrence of double-diffusive convection are that the fluid contain two or more components with different molecular 
diffusivities and that these components make opposing contributions to the vertical density gradients. Trevisan and Bejan 
[36] have analyzed the natural convection caused by analytically and numerically in a rectangular enclosure with uniform 
heat and mass fluxes along the vertical sides. He obtained o seen linearised solution for all spaces filled with mixtures 
characterized by Le = 1 and arbitrary buoyancy ratios.  

The effect of varying the Lewis number (L) is documented by a similarity solution valid for Le > 1 in heat transfer driven 
flows and for Le < 1 mass transfer driven flows. Mass line patterns are used to visualize the convective mass transfer rate and 
the flow reversal is observed when the buoyancy ratio n = 1. Also Trevisan et. al., [37] have studied natural convection heat 
and mass transfer through a vertical porous layer subjected to uniform fluxes of heat and mass from the side. The Oseen's 
Linearized solution that yielded the overall heat and mass transfer correlation was developed for porous medium and a 
buoyancy effect ruled by both temperature and concentration variations in the high Rayleigh number region where the heat 
and mass transfer rates differ greatly from estimates based on the assumption of pure diffusion. The similarity solution that 
produced the overall mass transfer was developed for different parametric domain.  

Literature suggests that the effect of viscous dissipation on heat transfer as been studied for different geometries. 
Brinkman [38], have studied the viscous dissipation effect on natural convection in horizontal cylinder embedded in porous 
medium. Their study showed that the viscous dissipation effect on natural convection in a porous cavity and found that the 
heat transfer rate at hot surface decreases with increase of viscous dissipation parameter. Thermal radiation plays a 
significant role in the overall surface heat transfer where convective heat transfer is small. Verschoor et. al., [39] have 
studied the effect of viscous dissipation and radiation on unsteady magneto hydrodynamic free convection flow fast vertical 
plate in porous medium. They found that the temperature profile increases when viscous dissipation increases. A good 
amount of work has been done to understand natural convection in porous cavity. Inspite of endeavour efforts to study heat 
transfer in porous cavity, the combined effect of viscous dissipation and radiation on porous medium filled inside a square 
cavity has not received attention. Badruddin et. al., [40] have investigated the radiation and viscous dissipation on convective 
heat transfer in porous cavity. Recently Padmavathi [8] Nagaradhika [41] and Sreenivas have analyzed the connective heat 
transfer through a porous medium in a rectangular cavity with heat sources and dissipation under varied conditions. Ranga 
Reddy [11] has discussed the natural convective Heat and Mass transfer in Porous Rectangular Cavity with a differentially 
heated side walls using Brinkman model. By using Galerkin finite element analysis, the governing equations are solved. 
Sivaiah et. al., [13] have investigated double-diffusive convective Heat transfer flow of a viscous fluid through a porous 
medium with rectangular duct with thermo-diffusion by using finite element technique. Reddaiah et. al., [42] have analyzed 
the effect of viscous dissipation on convective heat and mass transfer flow of a viscous fluid in a duct of rectangular cross 
section by employing Galerkin finite element analysis. Recently Shanthi [37] has discussed the mixed convective heat and 
mass transfer flow of a viscous fluid through a porous medium in a rectangular duct with Soret effect. 

In this paper an attempt has been made to discuss the combine influence of radiation and dissipation on the convective 
heat and mass transfer flow of a viscous fluid through a porous medium in a rectangular cavity using Darcy model. Making 
use of the incompressibility the governing non-linear coupled equations for the momentum, energy and diffusion are derived 
in terms of the non-dimensional stream function, temperature and concentration. The Galerkin finite element analysis with 
linear triangular elements is used to obtain the Global stiffness matrices for the values of stream function, temperature and 
concentration. These coupled matrices are solved using iterative procedure and expressions for the stream function, 
temperature and concentration are obtained as a linear combinations of the shape functions. The behaviour of temperature, 
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concentration, Nusselt number and Sherwood number are discussed computationally for different values of the governing 

Parameters  Ra, , N, N1, Sc, S0 and Ec.  

 

Fig. 1. Schematic diagram of the flow model 

2 FORMULATION OF THE PROBLEM 

We consider the mixed convective heat and mass transfer flow of a viscous incompressible fluid in a saturated porous 
medium confined in the rectangular duct (Fig. 1) whose base length is a and height b. The heat flux on the base and top walls 
is maintained constant. The Cartesian coordinate system O (x,y) is chosen with origin on the central axis of the duct and its 
base parallel to x-axis.  

We assume that 

i) The convective fluid and the porous medium are everywhere in local thermodynamic equilibrium. 

ii) There is no phase change of the fluid in the medium. 

iii) The properties of the fluid and of the porous medium are homogeneous and isotrophic. 

iv) The porous medium is assumed to be closely packed so that Darcy’s momentum law is adequate in the porous 

medium. 

v) The Boussinesq approximation is applicable. 

 

Under these assumption the governing equations are given by: 
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where u and v are Darcy velocities along q(x, y) direction. T, C,p and g are the temperature, Concentration, pressure 
and acceleration due to gravity, Tc ,Cc and Th ,Ch are the temperature and Concentration on the cold and warm side walls 

respectively. , , , and  are the density, coefficients of viscosity, kinematic viscosity and thermal expansion of he fluid, k is 
the permeability of the porous medium, K1 is the thermal conductivity, Cp is the specific heat at constant pressure , Q is the 

strength of the heat source,k11 is the cross diffusivity , * is the volume coefficient of expansion with mass fraction 

concentration ,   is the electrical conductivity , e  is the magnetic permeability of the medium ,Ho is the strength of the 

magnetic field and qr is the radiative heat flux..  

The boundary conditions are: 

u = v = 0   on the boundary of the duct 

T = Tc, C=Cc   on the side wall to the left 

T = Th, C=Ch   on the side wall to the right       (2.7) 
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Invoking Rosseland  approximation for radiation: 

qr = 
y

T

R 

 4

3

4




 

 

Expanding T4 in Taylor’s series about Te and neglecting higher order terms: 
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We now introduce the following non-dimensional variables: 

x =  ax; ; y = by  ; c = b/a 
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T = T0 + q (Th – Tc)    C = C0 +  (Th – Tc)     (2.8) 
 
The governing equations in the non-dimensional form are: 
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In view of the equation of continuity we introduce the stream function  as: 
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Eliminating p from the equation (2.9) and (2.10) and making use of (2.11) the equations in terms of  and q are: 
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The four boundary conditions are: 
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3 FINITE ELEMENT ANALYSIS AND SOLUTION OF THE PROBLEM 

The region is divided into a finite number of three node triangular elements, in each of which the element equation is 
derived using Galerkin weighted residual method. In each element fi the approximate solution for an unknown f in the 

variational formulation is expressed as a linear combination of shape function.   ,3,2,1kN i
k  Which are linear polynomials 

in x and y. This approximate solution of the unknown f coincides with actual values at each node of the element. The 
variational formulation results in a 3 x 3 matrix equation (stiffness matrix) for the unknown local nodal values of the given 
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element. These stiffness matrices are assembled in terms of global nodal values using inter element continuity and boundary 
conditions resulting in global matrix equation. 

In each case there are r distinct global nodes in the finite element domain and fp (p = 1,2,……r) is the global nodal values 
of any unknown f defined over the domain then: 
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Where the first summation denotes summation over s elements and the second one represents summation over the 
independent global nodes and: 
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p N  if   p is one of the local nodes say k of the element  ei 

       = 0, otherwise. 
 

fp’ s are determined from the global matrix equation.  Based on these lines we now make a finite element analysis of the 
given problem governed by (2.14)- (2.16) subjected to the conditions (2.17) – (2.18). 

Let i , qi  and i  be the approximate values of  ,q  and  in an element qi. 
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Under Galerkin method this error is made orthogonal over the domain of ei to the respective shape functions (weight 
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Using Green’s theorem we reduce the surface integral (3.4) & (3.5) without affecting  terms and obtain: 
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Where I is the boundary of ei. 

Substituting L.H.S. of (3.1a)- (3.1c) for i , qi  and i  in (3.6)&(3.7) we get: 
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Where: 

i
k

i
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i
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i
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i
k QQQQQ ,321  ’s being the values of 

i
kQ  on the sides s = (1,2,3) of the element ei. The sign of 

i
kQ ’s depends 

on the direction of the outward normal w.r.t the element. 

Choosing different 
i
kN ’s as weight functions and following the same procedure we obtain matrix equations for three 

unknowns (
i
pQ ) viz., 

)())(( i
k

i
p

i
p Qa q            (3.10) 

Where )( i
pka  is a 3 x 3 matrix, )(),( i

k
i
p Qq  are column matrices. 
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Repeating the above process with each of s elements, we obtain sets of such matrix equations. Introducing the global 

coordinates and global values for 
i
pq and making use of inter element continuity and boundary conditions relevant to the 

problem the above stiffness matrices are assembled to obtain a global matrix equation. This global matrix is r x r square 
matrix if there are r distinct global nodes in the domain of flow considered. 

Similarly substituting i ,qi and i in (2.12) and defining the error: 
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And following the Galerkin method we obtain: 
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Using Green’s theorem (3.8) reduces to: 
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In obtaining (3.13) the Green’s theorem is applied w.r.t derivatives of  without affecting q terms. 

Using (3.1) and (3.2) in (3.13) we have: 
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In the problem under consideration, for computational purpose, we choose uniform mesh of 10 triangular elements (Fig. 
2). The domain has vertices whose global coordinates are (0,0), (1,0) and (1,c) in the non-dimensional form. Let e1, e2…..e10 

be the ten elements and let q1, q2, …..q10 be the global values of q and 1, 2,……10 be the global values of  at the ten 
global nodes of the domain (Fig. 2). 

 

Fig. 2. Schematic diagram of the configuration 
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4 SHAPE FUNCTIONS AND STIFFNESS MATRICES   

Range functions in 
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; i = element, j = node. 
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Substituting the vabove shape functions in (3.8), (3.9) & (3.14) w.r.t each element and integrating over the respective 

triangular domain we obtain the element in the form (3.8).The 3x3 matrix equations are assembled using connectivity 

conditions to obtain a 8x8 matrix equations for the global nodes p,qp and p. 

The global matrix equation for q is: 

333 BXA               (4.1) 

The global matrix equation for  is: 

444 BXA               (4.2) 

The global matrix equation for  is: 

555 BXA              (4.3) 

 
 

 

 

 

 



A. Veera Suneela Rani, Dr. V. Sugunamma, and N. Sandeep 

 

 

ISSN : 2028-9324 Vol. 1 No. 1, Nov. 2012 127 
 

 

Where: 
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The global matrix equations are coupled and are solved under the following iterative procedures. At the beginning of the 

first iteration the values of (i) are taken to be zero and the global equations (4.1) & (4.2) are solved for the nodal values of q 

and .These nodal values (qi) and (i) obtained are then used to solve the global equation (4.3) to obtain (i). In the second 

iteration these (i) values are obtained are used in (4.1) & (4.2) to calculate (qi) and (i) and vice versa. The three equations 
are thus solved under iteration process until two consecutive iterations differ by a pre-assigned percentage. 

The domain consists three horizontal levels and the solution for Ψ & θ at each level may be expressed in terms of the 
nodal values as follows, 
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and H represents the Heaviside function. 

The expressions for θ are: 
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   = 3(3-4x) +2 4(2x-
c

y2
-1)+ 6(

c

y4
-4x+3) H(1- τ3)  

 +( 3(1-
c

y4
)+ 5(4x-3)+ 6(

c

y4
)) H(1- τ4)   (

3

2
≤ x ≤1) 

Along the strip    
3

c
≤ y≤

3

2c
 

 = (7(2(1-2x)+ 6(4x-3)+ 8(
c

y4
-1)) H(1- τ3)               (

3

1
≤ x ≤

3

2
)  

         +(6(2(1-
c

y2
)+ 9(

c

y4
-1)+ 8(1+

c

y4
-4x)) H(1- τ4) 

          +( 6(4(1-x)+ 5(4x-
c

y4
-1)+ 9 2(

c

y4
-1)) H(1- τ5) 

Along the strip      
3

2c
≤ y≤1 

      = (84(1-x) +  94(x- 
c

y
)+ 10(

c

y4
-3) H(1- τ6)      (

3

2
≤ x ≤ 1) 
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The dimensionless Nusselt numbers(Nu) and Sherwood Numbers (Sh) on the non-insulated boundary walls of the 
rectangular duct are calculated using the formula: 

Nu = (
x

q
) x=1 and   Sh = (

x


) x=1 

Nusselt Number on the side wall x=1in different regions are: 

 Nu1=2-4q3         ( )3/0 hy   

 Nu2=2-4q5        ( )3/23/ hyh   

 Nu3=2-4q7         ( )3/2 hyh   

Sherwood  Number on the side wall x=1 in different regions are: 

 Sh1=2-43         ( )3/0 hy   

 Sh2=2-45         ( )3/23/ hyh   

 Sh3=2-47         ( )3/2 hyh   

5 DISCUSSION OF THE NUMERICAL RESULTS 

In this analysis we investigate the effect of chemical reaction on the mixed convective heat and mass transfer flow of a 
viscous electrically conducting fluid through a porous medium n a rectangular cavity.  

The non-dimensional temperature (q) is shown in figs 1-32 at different horizontal and vertical levels with variations in Ra, 

, Sc, N, N1, Ec, k and M. Figs. 1-4 represents the temperature(q) with Rayleigh number Ra at horizontal and vertical levels. It 

is found that the actual temperature depreciates with Ra  2x10
2
 and enhances at  Ra  3x10

2
 at all levels.  

An increase in |Ra| enhances the actual temperature at 
3

2h
y  and 

3

2
x  levels while it depreciates at 

3

h
y   and 

3

1
x levels (figs. 1-4). Figs. 5-8 represents q with heat source parameter . At levels 

3

1
x , 

3

h
y  &

3

2h
y   the actual 

temperature reduces with increase in the strength of the heat source and enhances with the strength of the heat sink. At 

3

2
x level, the actual temperature enhances with   4 and for higher   6, it reduces in the horizontal strip (0, 0.462) and 

enhances in the horizontal strip (0.528, 0.666) while an increase in ||  4, results in a depreciation in the region (0, 0.066) 

and enhances in the horizontal strip (0.132, 0.666) (fig. 8). Figs. 9-12 represent q with Schmidt number Sc. It is found that an 

increase in Sc  0.6, reduces the actual temperature at 
3

2h
y   level and enhances at 

3

h
y   level while it enhances with Sc 

= 1.3 and reduces with higher Sc = 2.01 at both the horizontal levels. At the vertical level 
3

1
x , it enhances with Sc  1.3 

and reduces with higher Sc  2.01. At the higher vertical level
3

2
x , lesser the molecular diffusivity larger the actual 

temperature in the horizontal strip (0, 0.066) and lesser in the strip (0.132, 0.666).  

For further lowering of the molecular diffusivity larger the temperature in the strip (0, 0.396) and lesser in the strip 
(0.462, 0.666) and for still lowering of the diffusivity lesser in the region (0, 0.396) and larger the actual temperature in the 

region (0.462, 0.666)(fig. 12). The variation of q with buoyancy ratio N shows that when the molecular buoyancy force 
dominates over the thermal buoyancy force the actual temperature depreciates at all levels irrespective of the directions of 

the buoyancy forces (figs. 13-16). The variation of q with radiation parameter N1 is shown in figs. 17-20. It is found that higher 
the radiative heat flux lesser the actual temperature, for further higher flux, larger the actual temperature and for still higher 

radiative heat flux lesser the temperature at all horizontal levels and vertical level
3

1
x . At the higher vertical level

3

2
x , 

an increase in N1  0.03, leads to a depreciation in the actual temperature, for higher N1  0.05, larger in the horizontal strip 
(0, 0.264) and lesser in the region (0.33, 0.666) and for still higher N1 = 0.07, the actual temperature enhances in the region 
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except in a narrow region adjacent to y = 0(fig. 20). The influence of dissipative effect on q is shown in figs. 21-24 at different 

levels. From figs. 21&23 it follows that the actual temperature reduces with Ec  0.005 and enhances with higher Ec  0.007 

at 
3

2h
y   level and 

3

1
x  level. At the horizontal level it depreciates with lower and higher values of Ec and depreciates 

with intermediate value Ec = 0.005 while at the higher vertical level
3

2
x , the actual temperature fluctuates with Ec (fig. 

24). The influence of chemical reaction on q is shown in figs. 25-28. It if found that the actual temperature depreciates in the 
degenerating chemical reaction case at all horizontal and vertical levels while in the generating chemical reaction case, it 

reduces with |k|  1.5 and enhances with |k|  2.5 at 
3

h
y  , 

3

2h
y   and 

3

1
x  levels. At te higher vertical

3

2
x , an 

increase in |k|  1.5, depreciates the actual temperature while for higher |k|  2.5, it depreciates in the horizontal strip (0, 

0.264) and enhances in the region (0.33, 0.666) (fig. 28). Figs. 29-32 represent q wit Hartman number M. It is found that 

higher the Lorentz force lesser the actual temperature at 
3

h
y   ,

3

2h
y   and 

3

1
x  levels and for further higher Lorentz 

force lesser at 
3

2h
y  level and larger at 

3

h
y  and 

3

1
x  levels. At 

3

2
x  level, the actual temperature reduces q with 

M  10 in the region (0, 0.264) and enhances in the region (0.33, 0.666) and for higher M  15, lesser the actual temperature 
in the entire flow region (fig. 32).  

The non-dimensional concentration (C) is show in figs. 33-64 at different horizontal and vertical levels. Figs 33-36 

represent the concentration with Rayleigh number Ra. It is found that at the levels 
3

h
y   and 

3

1
x , the actual 

concentration enhances with Ra  2x102 and depreciates with Ra  3x102 while it reduces with increase n |Ra| (<0)(figs. 

34&35). At the higher levels 
3

2h
y   and 

3

2
x , the actual concentration reduces with Ra  2x10

2
 and enhances with Ra  

3x102
 while it enhances with |Ra| at both the levels (figs. 33 & 36). The variation of C with heat source parameter  shows 

that at the horizontal levels the actual concentration enhances with increase in the strength of the heat source/sink (figs. 

37&38).At the vertical level 
3

1
x  the actual concentration enhances with increase in   4 and depreciates with   

6,while it enhances with increase in the strength of heat source (fig. 39). At the higher vertical level 
3

2
x  an increase in the 

strength of heat source enhances the concentration in the horizontal strip (0, 0.33) and depreciates in the region (0.396, 
0.666) while it enhances with increase in the strength of heat sink (fig. 40). The variation of C with buoyancy ratio N shows 

that at the horizontal levels 
3

h
y   and 

3

2h
y   and vertical level 

3

1
x the actual concentration depreciates when the 

buoyancy forces act in the same direction and enhances when forces act in opposite direction (figs. 45-47). At 
3

2
x  level 

the actual concentration depreciates with N>0 in the horizontal strip (0, 0.33) and enhances in the remaining region and a 
reversed effect is observed in the actual concentration with increase in |N|(fig. 48). The variation of C with Schmidt number 

Sc shows that at 
3

h
y  and 

3

1
x  levels lesser the molecular diffusivity larger the actual concentration and for further 

lowering of the diffusivity smaller the concentration (figs. 42-43). At higher horizontal level 
3

2h
y   the actual concentration 

depreciates with Sc  1.3 and enhances with higher Sc  2.01 (fig. 41). At 
3

2
x level for smaller and higher values of Sc the 

actual concentration enhances in the region (0, 0.33) and depreciates in the region (0.396, 0.666) and for Sc = 1.3, it 
depreciates in the region (0, 0.033) and enhances in the remaining region.  
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The variation of C with radiation parameter N1 in shown figs. 49-52.It is found that at both the horizontal levels the actual 

concentration depreciates with radiation parameter N1  0.03 and enhances with higher N1  0.07 (figs. 49&50). At 
3

1
x  

level the actual concentration enhances with N1=  0.03 and depreciates with N1  0.05. From fig 52 we find that for smaller 
and moderate values of N1 the actual concentration reduces in the region (0, 0.264) and enhances in the region (0.33, 0.666) 
while for intermediate value of N1 = 0.05 it depreciates in the horizontal strip (0, 0.33) and enhances in the region (0.396, 
0.666). The variation of C with Eckert number Ec is shown in figs. 53-56 at different levels. It is found from figs.53&54 that 
the actual concentration enhances with lower and higher values of Ec and depreciates with intermediate value of higher 

values of Ec and depreciates with intermediate value of Ec = 0.005. At 
3

1
x  level the actual concentration depreciates with 

Ec  0.005 and enhances with Ec  0.007 (fig. 55). At higher vertical level 
3

2
x  the actual concentration enhances with Ec  

0.005 in the region (0, 0.132) and depreciates in the remaining region and for Ec  0.007 we notice an enhancement in the 
actual concentration everywhere in the region (fig. 56).The influence of the chemical reaction on C is shown in figs. 57-60 at 

different levels. At 
3

2h
y  , the actual concentration depreciates in the degenerating chemical reaction case and enhances 

in the generating chemical reaction case. At 
3

h
y   and 

3

1
x  levels the actual concentration depreciates with increase in k 

 1.5 and enhances with k  2.5 at both the levels, while an increase in |k|  1.5 enhances the concentration at 
3

h
y   level 

and depreciates at 
3

1
x  level, and for higher |k|  2.5 it depreciates at 

3

h
y  level and enhances at 

3

1
x  level (figs. 

58&59). At higher vertical level 
3

2
x  the actual concentration experiences an enhancement with k>0 and for |k|  1.5 we 

notice an enhancement in the region (0, 0.264) and depreciation in the region (0.33, 0.666) and for higher |k|  2.5 it 
depreciates in the region (0, 0.264) and enhances in the remaining region (fig. 60).The variation of C with Hartman number M 

is shown in figs. 61-64 at different levels. It is found that at 
3

h
y  level and 

3

1
x  level higher the Lorentz force lesser the 

actual concentration (figs. 62-63). At 
3

2h
y   level lesser the Lorentz force larger the actual concentration and for further 

higher the Lorentz force lesser the actual concentration (fig. 61). At 
3

2
x  level the actual concentration enhances in the 

region (0, 0.264) and depreciates in the region (0.33, 0.666) with M  10 and for higher M  15 and for higher M  15 we 
notice a reversed effect in the behavior of actual concentration (fig. 64).  

The rate of heat transfer on the side wall x = 1 is evaluated for different values of Ra, , Sc, N, N1, Ec, k, and M and are 
presented in tables 1-3. The variation of Nu with Rayleigh number Ra shows that the Nusselt number enhances with increase 
in Ra in all the quadrants while for an increase in |Ra|, Nu depreciates in the lower quadrant and enhances in the middle and 
uppermost quadrants. An increase in the strength of the heat source enhances Nu in the lower and middle quadrants and 
reduces in the upper quadrant while the strength of the heat sink reduces Nu in the first quadrant and reduces it in the 
middle and upper quadrants. Lesser the molecular diffusivity larger the rate of heat transfer in all the three quadrants 
(table.1). When the molecular buoyancy force dominates over the thermal buoyancy force the rate of heat transfer enhances 
when the buoyancy forces act in the same direction while for the forces acting in opposite direction, it enhances in the lower 
and middle quadrants and reduces in the upper quadrant. An increase in the radiation parameter N1 leads an enhancement 
in |Nu| in all the three quadrants. The variation of Nu with Ec shows that higher the dissipative heat larger |Nu| in the lower 
and middle quadrants and smaller in the upper quadrant (table. 2). From table. 3 we find that higher the Lorentz force larger 
Nu in all the quadrants. With respect to the chemical reaction parameter k, we find that the rate of heat transfer enhances in 
the lower and middle quadrants and reduces in the upper quadrant in the degenerating chemical reaction case while it 
enhances in the generating chemical reaction case in all the three quadrants (table. 3).  
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The rate of mass transfer (Sh) at x = 1 is shown in tables 4-6 for different variation. From table.4 we find that the rate of 
mass transfer enhances n the lower and middle quadrants and reduces in the upper quadrant with increase in Ra while it 

reduces with |Ra| in all the three quadrants. An increase in >0 reduces with Sh in all the quadrants while for || (<0), it 
reduces in the middle quadrant. Lesser the molecular diffusivity smaller |Sh| in the lower and middle quadrants and 
enhances in the upper quadrant(table. 4). The variation of Sh with buoyancy ratio N shows that |Sh| enhances with N>0 and 
for |N| (<0), Sh depreciates in the lower and middle quadrants and enhances in the upper quadrant. An increase in the 

radiation parameter N1 0.05 enhances Sh in the middle and upper quadrants and reduces with higher N1  0.07 while the 

rate of mass transfer in the first quadrant reduces with N1  0.05 and enhances with N1  0.07. Also higher the dissipative 
heat larger Sh and for higher dissipative heat lesser Sh in all the three quadrants (table. 5).  With respect to Hartmann 
number M we find that the higher the Lorentz force larger Sh in all the quadrants. An increase in the chemical reaction 
parameter k>0 reduces Sh in the lower and middle quadrants and reduces in the upper quadrant while an increase in |k| (<0) 

 1.5, reduces Sh in the first quadrant and enhances in the middle and upper quadrants while for |k|  2.5, we find an 
enhancement in Sh in the first quadrant and depreciates in the other two quadrants (table. 6).  

 

6 FIGURES 

 

 

 

 

Fig. 1.  Variation of q with  R at 
3

2h
y   level   Fig. 2. Variation of q with R at 

3

h
y   level 
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Fig. 3. Variation of q with  x at 
3

2
x  level   Fig. 4. Variation of q with x at 

3

1
x  level 

I II III IV V    I II III IV V 
R 100 200 300 -100 -200   R 100 200 300 -100 -200 

 
 

 

 

Fig. 5. Variation of q with   at 
3

2h
y   level    Fig. 6. Variation of q with  at 

3

h
y   level
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Fig. 7. Variation of q with  at 
3

1
x  level   Fig. 8. Variation of q with   at 

3

2
x  level 
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Fig. 9. Variation of q with  Sc at 
3

2h
y   level        Fig. 10. Variation of q with Sc at 

3

h
y   level 
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Fig. 11. Variation of q with Sc at 
3

1
x  level  Fig. 12. Variation of q with Sc at 

3

2
x  level 
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Fig. 13. Variation of q with  N at 
3

2h
y   level  Fig. 14. Variation of q with N at 

3

h
y   level 
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Fig. 15. Variation of q with N at 
3

1
x  level   Fig. 16. Variation of q with N at 

3

2
x  level 
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Fig. 17. Variation of q with N1 at 
3

2h
y   level  Fig. 18. Variation of q with N1 at 

3

h
y   level 
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Fig. 19. Variation of q with N1 at 
3

1
x  level   Fig. 20. Variation of q with N1 at 

3

2
x  level 
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Fig. 21. Variation of q with Ec at 
3

2h
y   level  Fig. 22. Variation of q with Ec at 

3

h
y   level 
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Fig. 23. Variation of q with Ec at 
3

1
x  level  Fig. 24. Variation of q with Ec at 

3

2
x  level 
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Fig. 25. Variation of q with k at 
3
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y   level        Fig. 26. Variation of q with k at 
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h
y   level 
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Fig. 27. Variation of q with k at 
3

1
x  level       Fig. 28. Variation of q with k at 

3

2
x  level 
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Fig. 29. Variation of q with M at 
3

2h
y   level   Fig. 30. Variation of q with M at 

3

h
y   level 
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Fig. 31. Variation of q with M at 
3

1
x  level   Fig. 32. Variation of q with M at 

3

2
x  level 
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Fig. 33. Variation of C with R at 
3

2h
y   level   Fig. 34. Variation of q with C at 

3

h
y   level 
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Fig. 35. Variation of C with R at 
3

1
x  level   Fig. 36. Variation of C with C at 

3

2
x  level 
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Fig. 37. Variation of C with   at 
3

2h
y   level   Fig. 38. Variation of C with  at 

3

h
y   level 
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Fig. 39. Variation of C with  at 
3

1
x  level   Fig. 40. Variation of C with   at 

3

2
x  level 

I II III IV V    I II III IV V 

 2 4 6 -2 -4    2 4 6 -2 -4 

 
 

 

 

Fig. 41. Variation of C with  Sc at 
3

2h
y   level  Fig. 42. Variation of C with Sc at 

3

h
y   level 
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Fig.43. Variation of C with Sc at 
3

1
x  level   Fig. 44. Variation of C with Sc at 

3

2
x  level 
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Fig. 45. Variation of C with N at 
3

2h
y   level   Fig. 46. Variation of C with N at 

3

h
y   level 
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Fig. 47. Variation of C with N at 
3

1
x  level   Fig. 48. Variation of C with N at 

3

2
x  level 
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Fig. 49. Variation of C with N1 at 
3

2h
y   level        Fig. 50. Variation of C with N1 at 

3

h
y   level 
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Fig.51. Variation of C with N1 at 
3

1
x  level  Fig. 52. Variation of C with N1 at 

3

2
x  level 

I II III IV     I II III IV 

N1 0.01 0.03 0.05 0.07    N1 0.01 0.03 0.05 0.07 

 

 

 

Fig. 53. Variation of C with Ec at 
3

2h
y   level   Fig. 54. Variation of C with Ec at 

3
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y   level 
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Fig. 55. Variation of C with Ec at 
3

1
x  level  Fig. 56. Variation of C with Ec at 

3

2
x  level 
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Fig. 57. Variation of C with k at 
3
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y   level   Fig. 58. Variation of C with k at 

3

h
y   level 
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Fig. 59. Variation of C with k at 
3

1
x  level   Fig. 60. Variation of C with k at 

3

2
x  level 
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Fig. 61. Variation of C with M at 
3

2h
y   level   Fig. 62. Variation of C with M at 

3

h
y   level 
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Fig. 63. Variation of C with M at 
3

1
x  level   Fig. 64. Variation of C with M at 

3

2
x  level 

I II III IV    I II III IV 

M 5 10 15 20   M 5 10 15 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-2

-1.5

-1

-0.5

0

0.5

0.000 0.067 0.134 0.201 0.268 0.335

y

C

I

II

III

IV 

-3

-2

-1

0

1

2

3

0.000 0.066 0.132 0.198 0.264 0.330 0.396 0.462 0.528 0.594 0.660

y

C

I

II

III

IV 



A. Veera Suneela Rani, Dr. V. Sugunamma, and N. Sandeep 

 

 

ISSN : 2028-9324 Vol. 1 No. 1, Nov. 2012 151 
 

 

REFERENCES 

[1] Bankvall, C.G, “Natural convective heat transfer in a insulated structures,” Lundinst. Tech. Report 38, pp. 1-149, 1972. 
[2] Bankvall, C.G, “Heat transfer in fibrous material,” J. Test. E, vol. 3, pp. 235-243, 1973. 
[3] C. E. Hickox and D. K. Gartling, “A numerical study of natural convection in a horizontal porous layer subjected to an 

end-to-end temperature difference,” ASME J. Heat Transfer, 103, 797–802, 1981. 
[4] Hiroxhi Iwai, Kazuyoshi nakabe, Kenjiro Suzuki, “Flow and Heat transfer characteristics of backward-facing step laminar 

flow in a rectangular duct,” Int. J. Heat and Mass transfer, vol. 43, pp. 457-471, 2000. 
[5] J. Kakutani, J. Phys. Soc, Japan, vol. 13, p. 1504, 1958. 
[6] Prasad, V. and Kulacki, F.A, “Natural convection in a vertical porous annulus,” Int. J. Heat mass transfer, vol. 27, pp. 207-

219, 1984. 
[7] K. Padmalatha, Ph.D. Thesis on “Finite element analysis of laminar convection flow through a porous medium in ducts,” 

S.K. University, Anantapur, (A. P) India, 1997. 
[8] Padmavathi, A., “Finite element analysis of the Convective heat transfer flow of a viscous in compressible fluid in a 

Rectangular duct with radiation, viscous dissipation with constant heat source,” Jour. Phys and Appl.Phys., vol. 2, 2009. 
[9] Prasad, V. and Kulacki, F.A. , “Convective heat transfer in a rectangular porous cavity effect of aspect ratio flow structure 

and heat transfer,” ASME Journal of heat transfer, vol. 106, pp. 158-165, 1984. 
[10] Poulikakos, D. and Bejan, A., “Natural convection in vertically and horizontally layered porous media heated from side,” 

Int. J. heat and mass transfer, vol. 26, pp. 1805-1813, 1983. 
[11] Rangareddy, M., “Heat and Mass transfer by Natural convection through a porous medium in ducts,” Ph.D thesis, S.K. 

University, Anantapur, 1997. 
[12] Seki. N., Fukusako. S and Inaba, H., “Heat transfer in a confined rectangular cavity packed with porous media,” Int. J. of  

heat and mass transfer, vol. 21, pp. 985-989, 1981. 
[13] Sivaiah, S., “Thermo-Diffusion effects on convective heat and mass transfer through a porous medium in Ducts,” Ph.D 

thesis, S.K University, Anantapur, India, 2004. 
[14] Bejan, A., “On the boundary layer region in a vertical enclosure filled with a porous medium,” letters heat and mass 

transfer, vol. 6, pp. 93-102, 1979.  
[15] Beckermann C, Ramadhyani, S, and Viskanta, R., “Natural convection flow and heat transfer between fluid layer and a 

porous layer inside a rectangular enclosure,” Journal of heat transfer, vol. 109, p, 363, 1987. 
[16] Cheng K.S. and J.R. Hi., “Steady, Two-dimensional, natural convection in rectangular enclosures with differently heated 

walls,” Transaction of the ASME, vol. 109, p, 400, 1987. 
[17] Chan, B.K.C, Ivey, U.M and Barry, J.M., “Natural convection in enclosed porous medium with rectangular boundaries,” 

ASME journal of heat transfer, vol. 92, pp. 21-27, 1970. 
[18] Holst, P.H., “Transient three dimensional natural convection in confined porous media,” Int. J. Heat Mass transfer, vol. 

15, pp. 72-89, 1972. 
[19] Joseph, J. Savino and Robert Siegel., “Laminar forced convection in Rectangular channels with unequal Heat addition on 

adjacent sides,” Int. J. Heat Mass transfer, vol. 71, pp. 733-741, 1964. 
[20] Kermant, B.C.C., “Natural convection flow and heat transfer between a fluid layer and a porous layer inside a 

rectangular enclosure,” Heat Transfer Laboratory, Purdue, University, Indiana. 
[21] Kamotani, Wang. L.W. Ostrach. S. and Jiang, H.D., “Experimental study of natural convection in shallow enclosures with 

horizontal temperature and concentration gradients,” Int. J. Heat Mass transfer, vol. 28 pp. 165-173, 1985. 
[22] Lauriant, F., “Natural convection and radiation on enclosure partially, filled with a porous insulation,” ASME, pp. 84-107, 

1984. 
[23] Morrison, F. A., “Transient multiphase Multi component flow in porous media,” Int. J.  Heat mass transfer, vol. 16, pp. 

2331-2341, 1973. 
[24] Verschoor, J.D, and Greebler, P., “Heat Transfer by gas conduction and radiation in fibrous insulation,” Trans. Am. Soc. 

Mech. Engrs, pp. 961-968, 1952. 
[25] Ribando, R.J. and Torrance, K.E., “Natural convection in a porous medium effects of confinement, variable permeability 

and thermal boundary conditions,” Trans. Am. Soc. Mech. Engrs. Series. C.J. Heat Transfer, vol. 98, pp. 42-48, 1976. 
[26] Rubin, A. and Schweitzer, S., “Heat transfer in porous media with phase change,” Int. J. Heat Mass Transfer, vol. 15, pp. 

43-59, 1972. 
[27] Bankvall, C.G., “Natural convective in vertical permeable space,” Warme-and staffubertragung, vol. 7, pp. 22-30, 1974. 
[28] Burns, P.J, Chow, L.C. and Chen, S., Int. J. Heat and Mass transfer, vol. 20, pp. 919-926, 1926. 
[29] Teoman Ayhan, Hayati Olgum, and Betul Ayhan, “Heat transfer and flow structure in a Rectangualr channel withwing -1. 

type vortex Generator,” Tr. J. of Engineering and Environmental Science, pp. 185-195, 22, 1998. 



Radiation Effects on Convective Heat and Mass Transfer Flow in a Rectangular Cavity 

 

 

ISSN : 2028-9324 Vol. 1 No. 1, Nov. 2012 152 
 

 

[30] Ham-Chien Chiu, Jer-Huan Jang, Wei-Monyan, “Mixed convection heat transfer in Horizontal rectangular ducts with 
radiation effects,” Int. Journal of Heat Mass transfer 50, pp. 2874-2882, 2007. 

[31] Chittibabu. D., Prasada Rao. D.R.V., Krishna D.V., “Convection flow through a porous medium in ducts,” Act science 
Indica, vol. 30 2M, pp. 635-642, 2006. 

[32] Ostrach. S., Jiang. H.D., Kamotani. Y., “Thermo solutal convection in shallow enclosures,” in ASME, JSME thermal 
Engineering Joint Confernece, Hawali, 1987. 

[33] R. Viskanta, T.L. Bergman, F.P. Incropera, “Double diffusive natural convection,” in: S. Kakac, W. Aung, R. Viskanta (Eds.), 
Natural Convection: Fundamentals and Applications, Hemisphere, Washington, DC, pp. 1075–1099, 1985. 

[34] Lee. L., Hyun. M.T., Kim. K.W., “Natural convection in confined fluids with combined horizontal temperature and 
concentration gradients,” Int. J. Heat Mass Transfer 31, pp. 1969-1977, 1985. 

[35] Hyun. J.M., Lee. J.W., “Double – diffusive convection in a rectangle with cooperating horizontal gradients of 
temperature and concentration gradients,” Int. J. Heat Mass transfer 33, pp. 1605-1617, 1990. 

[36] Trevisan, O.V. Bejan A., “Mass and heat transfer by natural convection in a vertical slot filled with porous medium,” Int. 
J. Heat Mass Transfer, vol.29 403-415, 1986. 

[37] Shanthi, G., “Numerical study of double diffusive flow of a viscous fluid through a porous medium in channels/ducts wit 
heat sources,” Ph. Thesis , S. K. Universtity, Anantapur, 2010. 

[38] Brinkmann, H.C., “A calculation of the viscous force external by a flowing fluid on a dense swarm of particles,” Applied 
science Research, Ala, p 81, 1948. 

[39] Verschoor, J.D, and Greebler, P., “Heat Transfer by gas conduction and radiation in fibrous insulation,” Trans. Am. Soc. 
Mech. Engrs, pp. 961-968, 1952. 

[40] Badruddin, I. A, Zainal, Z.A, Aswatha Narayana, Seetharamu, K.N., “Heat transfer in porous cavity under the influence of 
radiation and viscous dissipation,” Int. Comm. In Heat & Mass Transfer 33, pp. 491-499, 2006. 

[41] Nagaradhika V., “Mixed convective heat transfer through a porous medium in a Corrugated channel/ducts,” Ph.D. 
thesis, S.K. University, 2010. 

[42] Reddaiah, P., “Heat and Mass Transfer flow of a viscous fluid in a duct of rectangular cross section by using finite 
element analysis,” European J. Of Prime and Applied Mathematics, 2010. 

[43] Lee L.W., Hyun. J. M., “Double – diffusive convection in a rectangle with opposing horizontal and concentration 8 
gradients,” Int. J. Heat, Mass transfer, vol. 33, 1990.  

[44] Saffman, P.G., Studies in Applied Mathematics, vol. 50, p. 537, 1969. 
[45] San. J., “Natural convection in a rectangular porous cavity with constant heat flux as vertical wall,” Trans. Of ASME, vol. 

106, p. 252, 1984. 
[46] Trevisan. O.V., Bejan. A., “combined heat and mass tr ansfer by natural convection in a vertical enclosure,” ASME, J. 

Heat Transfer, 19, pp.104-112, 1987. 
[47] Turner. B.C, and Flack R.D., “The experimental measurement of natural convective heat transfer in rectangular 

enclosures with concentrated energy source,” Trans. Of ASME, vol. 102, pp. 236-242, 1980. 
[48] Tien C.L. and Hong. J. T., “Natural convection in porous media under non-darcion and non-uniform permeability 

convections,” in Natural Convection S. Kakac, et. al., (eds), Wemisphere, Washington, D.C., 1985. 
 
 


