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ABSTRACT: Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the
variations in the values of molecular properties and the biological activity for a series of compounds. These
physicochemical descriptors, which include parameters to account for hydrophobicity, topology, electronic properties, and
steric effects, are determined empirically or, more recently, by computational methods. Quantitative structure -activity
relationships (QSAR) generally take the form of a linear equation where the biological activity is dependent variable.
Biological activity is depended on the parameters and the coefficients. Parameters are computed for each molecule in the
series. Coefficients are calculated by fitting variations in the parameters. Intermediate values of the biological activity are
obtained by some formulas. These formulas are worked in tabulated values of biological activity in Quantitative structure -
activity relationships. These formulas are worked in the conditions and all conditions are based on the position of the
point lies in the table. Derived formulas using Newton’s method for interpolation are worked in conditions which are
depending on the point lies. If the point lies in the upper half then used Newton’s forward interpolation formula. If the
point lies in the lower half then we used Newton’s backward interpolation formula. And when the interval is not equally
spaced then used Newton’s divide difference interpolation formula. When the tabulated values of the function are not
equidistant then used Lagrangian polynomial. Mathematical expressions are derived for estimation of errors using
intermediate values and formulas.
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1 INTRODUCTION

Quantitative structure-activity relationships (QSAR) represent an attempt to correlate structural or property
descriptors of compounds with activities. These physicochemical descriptors, which include parameters to account for
hydrophobicity, topology, electronic properties, and steric effects, are determined empirically or, more recently, by
computational methods. Activities used in QSAR include chemical measurements and biological assays [1]-[5].

A QSAR generally takes the form of a linear equation

Biological Activity = Constant + (C1 P1) + (C2 P2) + (C3 P3) + ... (1)

Where the parameters 1P through nP are computed for each molecule in the series and the coefficients 1C through
nC are calculated by fitting variations in the parameters and the biological activity [1].

If f (CP) = Constant + (C1 P1) + (C2 P2) + (C3 P3)+ ......

From equation (1), we got:
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( )BA f CP

Suppose XCP  then we can write more simple form: ( )BA f X

Where BA is biological activity and X is variable from above function [1]. Some formulas are derived on the basis of
this function using Newton’s method for interpolation and Lagrangian polynomial. These formulas are used to obtaining
intermediate values of the biological activity. Derived formulas using Newton’s method for interpolation are worked in
conditions which are depending on the point lies. If the point lies in the upper half then used Newton’s forward
interpolation formula. If the point lies in the lower half then we used Newton’s backward interpolation formula. And
when the interval is not equally spaced then used Newton’s divide difference interpolation formula. When the tabulated
values of the function are not equidistant then used Lagrangian polynomial [6]-[22].

2 IF THE POINT LIES IN THE UPPER HALF

Let )(XfBA  be a function defined by n points ),.().........,(),,( 1100 nn XBAXBAXBA . Where BA is biological

activity and X is the variable. When nXXXX ..............3,2,1 are equally spaced with interval h . And If the point lies in the
upper half then we used following formula [1] [7]-[9]:

2 n
0 0

0 0

Δ BA Δ BA
BA(X) BA ΔBA (q) (q)[(q 1)]..... [(q)(q 1)...(q n)]

2! n!
      

[Where  is forward difference operator   and 0X X
q

h


 ]

2.1 ESTIMATION OF ERROR

Let )(XfBA  be a function defined by )1( n points ),.().........,(),,( 1100 nn XBAXBAXBA . When

nXXXX ..............3,2,1 are equally spaced with interval h and this function is continuous and differentiable )1( n times.

Let )(XfBA  be approximated by a   polynomial )(XPn of degree not exceeding a such that

iin BAXP )( [Where ni ...........3,2,1 ] (2)

Since the expression )()( XPXf n vanishes for nXXXX ..............3,2,1 ,

We put )()()( XKXPXf n  (3)

Where ).....().........)(()( 10 nXXXXXXX  (4)

And K is to be determined in such a way that equation (3) holds for any intermediate values of X , say 'XX 
[where nXXX  '0 ].

Therefore from (3): ( ') ( ')
( ')

f X P XK
X


 (5)

Now we construct a function )(Xf such that: 0 1( ) ( ) ( ) ( )nf X f X P X K X  

Where K is given by equation (5).

It is clear that: 0 1 2 3( ) ( ) ( ) ( ) ............ ( ) ( ') 0nf X f X f X f X f X f X      (6)

Let )(Xf vanishes )2( n times in the interval nXXX 0 ; consequently, by the repeated application of Rolle’s

Theorem [23] [24], )(' Xf must vanish )1( n times, )('' Xf must vanish n times etc in the interval nXXX 0 .

Particularly, )()1( Xf n must vanish once in the interval nXXX 0 . Let this point be ,UX  nXWX 0 .

Now differentiating equation (6) )1( n times with respect to X and putting UX  , we got:

( 1) ( ) ( 1)! 0nf U K n   
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Or
( 1) ( )

( 1)!

nf UK
n






(7)

Putting this value of K in equation (5), we got:
( 1)( ) ( ') ( ')

( 1)! ( ')

n
nf U f X P X

n X

 




Or
( 1)( )

( ') ( ') ( ')
( 1)!

n

n
f Uf X P X X
n




 


, 0 nX U X 

Since 'X is arbitrary therefore on dropping the prime on 'X we got:
( 1)( )

( ) ( ) ( )
( 1)!

n

n
f Uf X P X X
n




 


, 0 nX U X  (8)

Now we use Taylor’s theorem [25] [26]:
2

( ) ( ) '( ) ''( ) ......... ( ) .....
2! !

n
nh hf X h f U hf U f U f U

n
       (9)

Neglecting the terms containing second and higher powers of h in equation (9), we got:

( ) ( ) '( )f U h f U hf U  

Or
( ) ( )

'( )
f U h f Uf U

h
 

 (10)

Or
1

'( ) ( )f U f U
h
  [ ( ) ( )]f X h f X 

1
( ) ( )Df U f U

h
  [ ]

dD
dU

 

1D
h
  [Because )(Uf is arbitrary]

1 1
1

1n n
nD
h

 
  

From equation (10), we got: ( 1) ( 1)
( 1)

1
( ) ( )n n

nf U f U
h

 
 

Putting the values of )()1( Uf n in equation (8), we got:

( 1)
( 1)

( ) 1
( ) ( ) ( )

( 1)!
n

n n

Xf X P X f U
n h
 



           

0 1 2 0 ( 1)
( 1)

( )( )( ).................( ) 1
( ) ( ) ( )

( 1)!
n

n n

X X X X X X X Xf X P X f U
n h




              
(11)

If
0X X q

h

 Then:

0

1 0 0( ) ( ) ( ) ( 1)
X X hq
X X X X h X X h hq h h q
 
          

Similarly )2(2  qhXX

:

:

:

Similarly )( nqhXX n 
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Putting these values in equation (11), we got:

      ( 1)
( 1)

( ) ( 1) ( 2) ( 3) .............. ( ) 1
( ) ( ) ( )

( 1)!
n

n n

hq h q h q h q q n
f X P X f U

n h




              

( 1)( 1)( 2)( 3).........( )
( ) ( ) ( )

( 1)!
n

n
q q q q q nf X P X f U

n
            

This is mathematical expression for estimation of error, if the point lies in the upper half.

3 IF THE POINT LIES IN THE LOWER HALF

Let )(XfBA  be a function defined by n points ),.().........,(),,( 1100 nn XBAXBAXBA . Where BA is biological

activity and X is the variable. When nXXXX ..............3,2,1 are equally spaced with interval h . And If the point lies in the
lower half then we used following formula [1] [7]-[9]

2 n
n n

n n

BA BA
BA(X) BA .BA (r) [r(r 1)] ..... [(r){(r 1)}..{r (n-1)}]

2! n!
 

       

[Where  is backward difference operator and
nX X r

h

 ]

3.1 ESTIMATION OF ERROR

Let )(XfBA  be a function defined by )1( n points ),.().........,(),,( 1100 nn XBAXBAXBA . When

nXXXX ..............3,2,1 are equally spaced with interval h and this function is continuous and differentiable )1( n times.

Let )(XfBA  be approximated by a   polynomial )(XPn of degree not exceeding a such that

iin BAXP )( [Where ni ...........3,2,1 ] (12)

Since the expression )()( XPXf n vanishes for nXXXX ..............3,2,1 ,

We put we put ( ) ( ) ( )nf X P X K X  (13)

Where 1 0( ) ( )( )..............( )n nX X X X X X X     (14)

And K is to be determined in such a way that equation (13) holds for any intermediate values of X , say 'XX 
[where nXXX  '0 ].

Therefore from equation (13),

1

( ') ( ')
( ')

f X P XK
X


 (15)

Now we construct a function )(Xf such that: 0 1 1( ) ( ) ( ) ( )nf X f X P X K X  

Where K is given by equation (15).

It is clear that: 0 1 2 3( ) ( ) ( ) ( ) ............ ( ) ( ') 0nf X f X f X f X f X f X      (16)

Let )(Xf vanishes )2( n times in the interval nXXX 0 ; consequently, by the repeated application of Rolle’s

Theorem [23] [24], )(' Xf must vanish )1( n times, )('' Xf must vanish n times etc in the interval nXXX 0 .

Particularly, )()1( Xf n must vanish once in the interval nXXX 0 . Let this point be ,ZX  nXZX 0 .

( 1) ( ) ( 1)! 0nf Z K n   
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Or:
( 1) ( )

( 1)!

nf ZK
n






(17)

Putting this value of K in equation (15), we got:
( 1)

1

( ) ( ') ( ')
( 1)! ( ')

n
nf Z f X P X

n X

 




Or
( 1)

1
( )

( ') ( ') ( ')
( 1)!

n

n
f Zf X P X X
n




 


, 0 nX Z X 

Since 'X is arbitrary therefore on dropping the prime on 'X we got:
( 1)

1
( )

( ) ( ) ( )
( 1)!

n

n
f Zf X P X X
n




 


, 0 nX Z X  (18)

Now we use Taylor’s theorem [25] [26]:
2

( ) ( ) '( ) ''( ) ......... ( ) .....
2! !

n
nh hf X h f Z hf Z f Z f Z

n
       (19)

Neglecting the terms containing second and higher powers of h in equation (19), we got:

( ) ( ) '( )f Z h f Z hf Z  

Or:
( ) ( )

'( )
f Z h f Zf Z

h
 

 (20)

Or:
1

'( ) ( )f Z f Z
h
  )]()([ XfhXf 

1
( ) ( )Df Z f Z

h
  [ ]

dD
dZ

 

1D
h
  [Because )(Zf is arbitrary]

1 1
1

1n n
nD
h

 
  

From equation (20), we got: ( 1) ( 1)
( 1)

1
( ) ( )n n

nf Z f Z
h

 
 

Putting the values of )()1( Wf n in equation (18), we got:

1 ( 1)
( 1)

( ) 1
( ) ( ) ( )

( 1)!
n

n n

Xf X P X f Z
n h
 



           

0 1 2 0 ( 1)
( 1)

( )( )( ).................( ) 1
( ) ( ) ( )

( 1)!
n

n n

X X X X X X X Xf X P X f Z
n h




              
(21)

If
0X X r

h

 Then

0

1 0 0( ) ( ) ( ) ( 1)
X X hr
X X X X h X X h hr h h r
 
          

Similarly )2(2  rhXX

:

:

:

Similarly )( nrhXX n 
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Putting these values in equation (21), we got:

      ( 1)
( 1)

( ) ( 1) ( 2) ( 3) .............. ( ) 1
( ) ( ) ( )

( 1)!
n

n n

hr h r h r h r r n
f T P T f Z

n h




              

( 1)( 1)( 2)( 3).........( )
( ) ( ) ( )

( 1)!
n

n
r r r r r nf X P X f Z

n
            

This is mathematical expression for estimation of error, if the point lies in the lower half.

4 IF INTERVALS ARE NOT BE EQUALLY SPACED

Let )(XfBA  be a function defined by n points ),.().........,(),,( 1100 nn XBAXBAXBA . Where BA is biological

activity and X is the variable. When nXXXX ..............3,2,1 are equally spaced with interval h . And If Intervals are not be
equally spaced then we used following formula we used following formula [1] [7]-[9]:

)])...(X)(X[(XBA.....))(X(XBA)(XBABABA(X) n211
n
d211

2
d11

.
d1 ΔΔΔ XXXXXX 

[Where d is divide difference operator]

4.1 ESTIMATION OF ERROR

Let )(Xf be a real-valued function define n interval and )1( n times differentiable on ),( ba . If )(XPn is the

polynomial. Which interpolates )(Xf at the )1( n distinct points ),(.....1,0 baXXX n , then for all  baX , ,there

exists    baX , 

     n ne X f X P X 

 
   
( 1)

01

n n

j

j

f
X X

n




 
  (22)

This is mathematical expression for estimation of error, if intervals are not be equally spaced.

5 WHEN THE TABULATED VALUES OF THE FUNCTION ARE NOT EQUIDISTANT

Let )(XfBA  be a function defined by n points ),.().........,(),,( 1100 nn XBAXBAXBA . Where BA is biological
activity and X is the variable. When the tabulated values of the function are not equidistant then we used following
formula [1] [7]-[9]:

1 1

(X )
BA( ) BA

( )
j

j

nn

i
ii j

j i

XX
X X 






 

5.1 ESTIMATION OF ERROR

Since the approximating polynomial  f X given by Lagrangian formula has the same values  0f X  1f X  2f X  3f X

 4f X …………  nf X as does ( )BA f X for the arguments 0X , 1X , 2X , 3X , 4X ……………….., nX the error term must have
zeros at these ( 1)n  points.

Therefore 0( )X X 1( )X X 2( )X X 3( )X X ……………………….. ( )nX X must be factors of the error and we can write:

0 1 2 3( )( )( )( )..................( )
( ) ( ) ( )

( 1)!
nX X X X X X X X X XF X f X K X

n
    

 


(23)
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Let X to be fixed in value and consider the function

0 1 2 3( )( )( )( )...............( )
( ) ( ) ( ) ( )

( 1)!
nx X x X x X x X x XW x F x f x K X

n
    

 


(24)

Then ( )W x has zero nXXXXXx ..............3,2,1,0 and X .

Since the thn )1(  derivative of the thn degree polynomial )(Xf is zero.

( 1) ( 1)( ) ( ) ( )n nW x F x K X   (25)

As a consequence of Rolle’s Theorem [23] [24], the thn )1(  derivative of )(xW has at least one real zero x in
the range nXX  0

Therefore substituting x in equation (25)

( 1) ( 1)( ) ( ) ( )n nW F K X   

Or ( 1) ( 1)( ) ( ) ( )n nK X F W   

( 1)( )nF 

Using this expression for ( )K X and writing out ( )f X

)(
)!1(

)....().........)(()(
)....().........)((
)....().........)((.......

.......)(
)....().........)((
)....().........)(()(

)....().........)((
)....().........)(()(

)1(10

110

110

1
12101

20
0

02010

21


























nn
n

nnnn

n

n

n

n

n

f
n

XXXXXXXf
XXXXXX
XXXXXX

Xf
XXXXXX
XXXXXXXf

XXXXXX
XXXXXXXf

Where nTT  0

This is mathematical expression for estimation of error, if the tabulated values of the function are not equidistant.

6 CONCLUSION

Derived mathematical expressions are useful to estimation of the errors in the formulas for obtaining intermediate
values of the biological activity in Quantitative structure-activity relationships (QSAR). All expressions are worked in n
limit which is the last value in the table. When we obtain the intermediate values of the biological activity in Quantitative
structure-activity relationships then these mathematical expressions are useful to estimate the errors in interpolated
values of the biological activity.
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