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ABSTRACT: In present day business and consumer environment, a robust voice identification system is needed to reduce false 
positives, and true negatives. In this work, a modified voice identification system is described using over sampled Haar 
wavelets followed by proper orthogonal decomposition. The audio signal is decomposed using over sampled Haar wavelets. 
This converts the audio signal into various non-correlating frequency bands. This allows us to calculate the linear predictive 
cepstral coefficient to capture the characteristics of individual speakers. Adaptive threshold was applied to reduce noise 
interference. This is followed by multi-layered vector quantization technique to eliminate the interference between multi-
band coefficients. Finally, proper orthogonal decomposition is used to evaluate unique characteristics for capturing more 
details of phoneme characters. The proposed algorithm was used on KING and MAT-400 databases. These databases were 
chosen as previous extraction results were available for them. In the present study, the KING database were trained with 
three sentences, and tested with two. On the other hand, the MAT-400 database were trained with two seconds of random 
voice signal, and tested with other two seconds. Results were compared with vector quantization and Gaussian mixture 
models. The present model gave consistently better performance on speech collected through mouthpieces, but gave 
comparatively poor performance on audio collected on telephones. The better performance is obtained at the cost of higher 
computational time. 
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1 INTRODUCTION 

Generally, speaker recognition can be divided into two parts: speaker verification and speaker identification. Speaker 
verification refers to whether the speech samples belong to some specific speaker or not. However, in speaker identification, 
the goal is to determine which one of a group of known voices best matches the input voice samples. Certainly, how to 
extract and model the speaker-dependent characteristics of the speech signal is the key point. It seriously affects the 
performance of the system. 

In past literatures for recognition models, vector quantization (VQ)[1]-[2], neural network (NN), dynamic time warping 
(DTW), hidden Markov model (HMM)[6], and Gaussian mixture model (GMM) were used in speaker recognition task. Some 
researchers combine VQ [3] and learning vector quantization (LVQ) [4] to form the group vector quantization (GVQ) that its 
performance is better than LVQ but it needs to be retrained after entering new samples. Also NN in speaker recognition task 
was used [5]. Although NN technique is robust and has high performance, it needs to be retrained after entering new 
samples. DTW technique [5] is not suitable for text-independent speaker recognition. GMM [7]-[10] were widely used in 
speaker recognition and had satisfactory performance. 

In this work, an effective and robust extraction method of speech features called LPCC with multiband support based on 
wavelet analysis has been implemented. In order to effectively utilize all these multi-band speech features, a modified vector 
quantization method called eigen-codebook vector quantization (ECVQ) as the identifier. In these text-independent 
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evaluations, the experimental results showed that this method has satisfactory computation cost and performance especially 
on the noisy environments. 

2 MATHEMATICAL MODEL 

2.1 COMPOSITE HAAR WAVELETS 

The Haar wavelet transform has an established name as a simple and powerful technique for the multi-resolution 
decomposition of time series. Unfortunately, the standard Haar wavelet transform has several limitations. The lack of 
translational shift invariance is very limiting when matching is to be performed over various intervals of the input data. The 
composite Haar wavelet used in this work is especially useful for real-time signal analysis for our purpose. 

In order to provide shift invariance, the Haar decomposition is over sampled. As for voice identification, over sampling 
operation will only be performed on the position axis [11]. The sampling grid for the scale axis will remain dyadic in scale. 
Oversampling on the position axis can be done to the highest resolution required, or any required intermediate, lower 
resolution. The highest available resolution that is that of the sampling rate of the input is being used. This means that we let 
the position translation index run over the positions i of the time series ψi. Therefore, the oversampled system will be as 
following [12]: 
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Where, BE denotes empty boundary coefficients and is introduced here in order to ensure alignment of the indices across 
scales. The bands that are empty are half the width of the wavelet. They are 'empty' because position of the wavelet can be 
aligned with the time series at either end. An oversampled grid obtained according to the above prescription is shown in 
figure 1. 

 

Fig. 1. Composite Haar decomposition. Highlighted (in red) is the dyadic pyramid [11] 

 MA=DMA is localized decomposition coefficients on the grid points. Of course it is possible to select the dyadic grid from 
the oversampled representation for any arbitrary starting location. One such possible (centered) selection has been 
highlighted in figure 1. 

2.2 PRINCIPAL COMPONENT ANALYSIS 

Assuming zero empirical mean (the empirical mean of the distribution has been subtracted away from the data set), the 
principal component w1 of a dataset x can be defined as [13]: 

  2
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There are two algorithms currently used to calculate PCA of a dataset that are:  covariance method and the correlation 
method [13]. For this work covariance method is implemented.  

3 SYSTEM DESCRIPTION 

The target of implemented prototype system (figure 2) is to create voice signature of a user and then to isolate the target 
user from a group of speakers. The two distinct parts of this system one is voice signature creation and other one is speaker 
detection.  

 

Fig. 2. Prototype System 

3.1 FEATURE EXTRACTION METHOD 

The wavelet transform is applied to decompose the input signal into various non-correlating frequency bands. Thus the 
linear predictive cepstral coefficients (LPCC) within all approximation channels are calculated to capture the characteristic of 
individual speaker. The main reason of using LPCC parameters is its good representation on the envelope of speech spectrum 
of vowel and its simplicity [9].  

As the LPCC parameters are bothered by noise interference, an adaptive threshold technique is applied in each 
approximation channel before the next decomposition process. The most significant coefficients at each scale, with 
amplitude above some thresholds, are defined as follows:  

jjj R  

Where σj is the standard deviation of the wavelet coefficients within approximation channel at scale j, and R is an 
adjusting multiplicative factor used to restrict the threshold at a certain extent. The recursive decomposition process lets the 
system easily acquire the multi-band features of the speech signal. In the final stage, a combination of these LPCC values is 
implemented by the following equation: 
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Where L is the levels of decomposition process and LPCCj is the set of cepstral coefficients of the wavelet coefficients at 
scale j.  
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3.2 PCA FOR VOICE SIGNATURE CREATION 

The PCA method [14]-[16] uses the statistical distribution of input samples to find the best projection bases. The 
advantages of PCA method are that the principal eigenvectors are orthogonal, and represent the directions where the signals 
have maximum energy. This property will speed up the convergence of model training and improve the recognition 

performance. While all training samples have been processed by PCA method, the evaluated mean vector x  and 

eigenvectors m ,...., 21  may effectively describe the characteristic of samples belonging to specific word. If there is a 

new sample xnew for classification, it will be adjusted by the mean vector and project to the m orthonormal eigenvectors as 
follows:  

i
T

newi xxp 

.)(      i=1,2,…..m 

Where pi is the projection of xnew on the ith projection base 


, and m is the number of the projection bases. Finally, the 

distance between ε and xnew the specific word is evaluated as follows:  
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Where ε is a distance vector. The norm represents distance value between and the word. The new sample is belonging to 
the code word that is most closing to xnew. This training procedure known eigen-codebook vector quantization (ECVQ) [17] is 
described as follows:  

Step 1: set up the number of the projection bases m, number of code words Cno maximum training times N.  

Step 2: use VQ training method to calculate the centroids of all code words and classify all training samples.  

Step 3: use PCA method to evaluate the mean vector x  and eigenvectors m ,...., 21  for each code word. Figure 14 

shows PCA output. 

Step 4: use eigen distance formula to evaluate the distance vector ε and classify the training samples by ||ε|| .  

Step 5: If the training times are less N and samples classification is not convergent, go to step 3.  

Step 6: store the mean vector x  and eigenvectors m ,...., 21  for each code word.  

Because the LPCC is extracted from the wavelet coefficients of multi-band speech signals, in order to eliminate 
interference between the multi-band coefficients, the individual codebook for each band is evaluated. The total distance 
total ε between new x and the specific model is sum of ε in each band. 

4 RESULT & DISCUSSION 

The algorithm described here is applied on KING [17] and MAT-400 [18] database. KING is a database of 51 male speakers 
collected through microphones and telephone networks. Ten sections were recorded at different time for every speaker. 
MAT-400 is a Mandarin speech database of 400 speakers collected through telephone networks in Taiwan. Speakers include 
216 males and 184 females. The speech signal is recorded at 8 kHz and 16 bits per sample. Furthermore, 16 orders of LPCC 
for each decomposition process were used. While computing LPCC, the mean normalization is used to compensate the 
channel effect. 

In this experiment, the performance of ECVQ model is compared to conventional VQ and GMM model with Gaussian 
white noise corruption. In KING database, three arbitrary sentence utterances for each speaker are used as the training 
patterns and two seconds of speech waveform cut from the other two sentence utterances are used as the testing patterns. 
In MAT- 400 database, two balance sentences used as the training patterns and two seconds of other 8 balance sentences us 
as the testing patterns. In proposed ECVQ model, the decomposition level is 4, j R =0, each layer has 64 code words that are 
represented by a mean vector and a projection base. In VQ and GMM model, 20 orders of MFCC were used. In VQ, 100 code 
words were used. In GMM, 50 code words were used. The results in Table 1 show how the performance of the other models 
begins to degrade as the SNR of testing environment departs from that of the training environment. However, the 
performance of proposed ECVQ model is better than other models, and maintains its robustness at lower SNR. 
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Table 1. Identification of rates of the VQ, GMM, and MLECVQ for different SNR 

Method 

KING 
MAT 
400 

Clean 
(%) 

20db 
(%) 

15db 
(%) 

Tel 
30.8db 

Tel 
18.2db 

Tel 
(%) 

VQ 83.62 67.73 53.45 71.87 61.5 95.62 

GMM 92.61 85.88 73.28 75.38 58.14 98.18 

ECVQ 96.47 89.05 69.66 70.32 69.38 99.04 

 
In other experiment with two sentence utterances of 20 speakers, the performance and computational cost of ECVQ is 

compared to conventional VQ and GMM model. The results are depicted in Table 2. In Table 2, Y/ X represents the results of 
1 second and 2 second testing utterances. Although the computational time of VQ is much less than other methods, its 
performance also was lowest. When the number of code works was less than 64, the performance and computational time of 
the proposed ECVQ is better than GMM+VQ model. 

Table 2. Identification rates and computations time 

Code words 
VQ GMM ECVQ 

Recog. Rate (%) Time (Sec) Recog. Rate (%) Time (Sec) Recog. Rate (%) Time (Sec) 

16 57.26/74.12 0.15/0.25 80/90.92 1.61/3.19 84.14/92.1 1.2/2.45 

32 68.78/80.84 0.25/0.5 83.83/93.28 3.05/5.95 86.81/94.79 2.65/4.85 

64 69.45/84.03 0.45/0.95 84.67/93.45 7.38/11.35 88.48/96.47 8.3/16.6 

5 CONCLUSION  

An improved model of voice identification method using composite Haar wavelet is proposed in this work with addition of 
Principal Component Analysis method for detecting the pattern of speech characteristics of human voice. This model 
requires very little training with increased accuracy and language independence. This model may be improved further for 
artificial voice regeneration of a particular human voice. 
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