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ABSTRACT: In this paper, we use a more realistic model which incorporates the effects of Brownian motion and
thermophoresis of nanoparticles for studying the effect of boundary conditions and some control parameters on the onset of
convective instability in presence of a uniform heat source in a confined medium filled of a Newtonian nanofluid layer which
is heated uniformly from below, this layer is assumed to have a low concentration of nanoparticles . The linear study which
was achieved in this investigation shows that the thermal stability of Newtonian nanofluids depends of the state of the
horizontal boundaries (rigid or free) , the heat source strength , the buoyancy forces , the Brownian motion , the
thermophoresis of nanoparticles and other thermo-physical properties of nanoparticles . The governing differential
equations are transformed into a set of ordinary differential equations by using similarity transformations , these equations
will be solved analytically by converting our boundary value problem to an initial value problem , after this step we will
approach the searched solutions numerically with polynomials of high degree to obtain a fifth order accurate solution.

KEYWORDS:Linear stability, Newtonian nanofluid, Heat source, Brownian motion, Thermophoresis, Power series.

1 INTRODUCTION

The nanofluid is considered as a homogeneous fluid containing colloidal suspensions of nano-sized particles named
nanoparticles in the base fluid (water, ethylene glycol, oil). The nanoparticles used in nanofluids are generally prepared of
metals, oxides, carbides, or carbon nanotubes. The purpose of using nanofluids is to obtain a higher values of heat transfer
coefficient compared with that of the base fluid , this remarkable propertie make them potentially useful in many practical
applications, for example in modern science and engineering including rotating machineries like nuclear reactors, petroleum
industry, biochemical and geophysical problems.

The nanofluid term was introduced by Choi [1] in 1995 and remains usually used to characterize this type of colloidal
suspension. Buongiorno [2] was the first researcher who treated the convective transport problem in nanofluids, he was
established the conservation equations of a non-homogeneous equilibrium model of nanofluids for mass, momentum and
heat transport. The thermal problem of instability in nanofluids with rigid-free and free-free boundaries was studied by Tzou
[3, 4]using the eigenfunction expansions method. The onset of convection in a horizontal nanofluid layer of finite depth was
studied by Nield and Kuznetsov [5].The problem of natural convection in a confined medium filled of a Newtonian nanofluid
layer has been studied in different situations by several authors [3-8],when the volumetric fraction of nanoparticles is
constant at the horizontal walls limiting the layer, they found that the critical Rayleigh number can be decreased or increased
by a significant quantity depending on the relative distribution of nanoparticles between the top and bottom walls.

Today, the problem of natural convection for the nanofluids is studied by some authors [9-12]using new boundary
conditions for the nanoparticles which combine the contribution of the Brownian motion and the thermophoresis of
nanoparticles instead to impose a nanoparticle volume fraction at the boundaries of the layer. The new model of boundary
conditions assumes that the nanoparticle flux must be zero on the impermeable boundaries. D.A. Nield and A.V. Kuznetsov
[9] are considered as the first ones who were used this type of boundary conditions for the nanoparticles. Until now , the
precedent boundary conditions are generally used to study the problem of natural convection in nanofluids using the
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Galerkin weighted residuals method (GWRM) without considering the different types of boundary conditions (free-free, rigid-
free, free-rigid and rigid-rigid cases).

Our work consists of studying the Rayleigh-Bénard problem in a confined medium filled of a Newtonian nanofluid layer in
the free-free, rigid-free, free-rigid and rigid-rigid cases where the nanoparticle flux is assumed to be zero on the horizontal
boundaries, the studied problem will be solved with a more accurate numerical method based on analytic approximations
using the power series method (PSM).

In this investigation we assume that the parameters which appear in the governing equations are considered constant in
the vicinity of the temperature of the cold wall T, which we took it as a reference temperature. Finally we will impose that
the flow is laminar and the radiation heat transfer mode between the horizontal walls will be negligible compared to other

modes of heat transfer.

The used method gives results with an accuracy of five digits after the comma to the critical values characterizing the
onset of the convection. To show the accuracy of our method in this study, we will check some results treated by Dhananjay
Yadav et al. [13], Nanjundappa et al. [14] and Shivakumara and Suma [15] concerning the study of the thermal instability of
regular fluids in presence of a uniform heat source.

2 MATHEMATICAL FORMULATION

We consider an infinite horizontal layer of an incompressible Newtonian nanofluid characterized by a low concentration
of nanoparticles, heated uniformly from below and confined between two identical horizontal surfaces where the
temperature is constant and the nanoparticle flux is zero on the boundaries (Fig.1), this layer will be subjected to an internal
heat source which will provide a constant volumetric heat Q¢ and also to the gravity field g. The thermo-physical properties

of nanofluid (viscosity, thermal conductivity, specific heat) are assumed constant in the analytical formulation except for the
density variation in the momentum equation which is based on the Boussinesq approximations. The asterisks are used to
distinguish the dimensional variables from the nondimensional variables (without asterisks) .

Z*/
dx* DpoT”
D e =
VB Y + T, 0z*
H
Nanofluid Layer with a Uniform §
y Heat Source
ax* DT aT*
=T,; D —=0
h’ B G, TC 0z*
0 SN

Fig.1. Physical configuration

Within the framework of the assumptions which were made by Buongiorno [2] and Tzou [3,4] for the Newtonian
nanofluids , we can write the basic equations of conservation as follows:

V'V =0 (1

{Z\z +(\7’V)\7*} =V +{Po [I*B(T* -T, )J(lfx*)erpx‘}ngW”\?‘ 2

*

ox
o

+(V.V')x =D,V +(I; jﬁ T (4)

Where V' is the vector differential operator.
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If we consider the following dimensionless variables:

2

(x‘;y‘;z‘) = H(X;y;z) 3 t° =H—t sV =£\7 ; P* ne
o H

=P T =T, =(T,-T)T ; ¥ —x;, = %%

Then, we can get from equations (1)-(4) the following adimensional forms:

V.V = (%)
P +(VV)V |=—V(P+R,z2) [ — %5 )R, T-Ryx -~ 1R, T &, + V2V (6)
T 8t 0 N 0
%+(V.§)T=§2T+NBL’ﬁX.§T+NANBL;‘6T.§T+HS ™
T (V9)y =LV + N, L VT ®)
at € €
Such that:
2 Cc H3(T, -T
Przi ; Le=a— : HszL : NBz(p )pXZ : azi : Razm
P D, x(T,-T,) (pc) (pc) na
R, _[po (1=%) +pps J g R, _(py —po)rigH N, =D [Th—*ch
no na DT\ %o

Where y; is the reference value for nanoparticle volume fraction.
2.1 BASIC SOLUTION

The basic solution of our problem is a quiescent thermal equilibrium state, it’s assumed to be independent of time where
the equilibrium variables are varying in the z-direction, therefore:

=0 9)

To1: Y N9y 20 (10
dz dz

T=0; PN g g 2o (11)
dz dz

If we introduce the precedent results into equations (6)-(8), we obtain:

6(P +RMZ):|:(1_XE)RaTb_RNXb %R, TbXb:| (12)
T, T, T,
4T +N,L St 9Ty +N,N,L, T “H, (13)
dZ dz dZ dZ
2 2
T
SN, S0 14
dz dz
After using the boundary conditions (10) and (11), we can integrate the equation (14) between 0 and z for obtaining:
1o =Na(1-T, ) +2% (15)

Where 1y, is the relative nanoparticle volume fraction at z =0, such that:

Yo = Xb (0)*_7(0
Xo
If we take into account the expression (15), we can get after simplification of the equation (13):
2
d I;b Z—HS (16)
dz
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Finally, we obtain after an integrating of the equation (16) between 0 and z:
T ——1n 2+(1H 1) +1 (17)
=-—Hz —H -1|z
b 2 s 2 s
1 2 1
Xo :ENAHSZ -N, (EHS_IJZ+XO (18)

2.2 STABILITY ANALYSIS

For analyzing the stability of the system, we superimpose infinitesimal perturbations on the basic solutions as follows:

T=T,+T ; V=V,+V ; P=P 4P ; y=7.+% (19)
In the framework of the Oberbeck-Boussinesq approximations, we can neglect the terms coming from the product of the
temperature and the volumetric fraction of nanoparticles in equation (6), if we suppose also that we are in the case of small
temperature gradients in a dilute suspension of nanoparticles, we can obtain after introducing the expressions (19) into
equations (5)-(8) the following linearized equations:

vV =0 (20)
P aalt = VP'+(R,T'=R )&, +V'V @21
oT’ oT' . oy 22)

W = VT 4, £,
ot 0z 0z

%+f4w’:NAL;I VT +L] V' (23)
Such that:
f,=DT, ; f,=N,L, D(x, +2N,T,) ; f,=N,L, DT, ; f,=Dy, ; D=d/dz
After application of the curl operator twice to equation (21) and using the equation (20), we obtain the following
equation:

P %ﬁzw’ =V'W+R VT =R Vay/ (24)

r

Such that:

Analyzing the disturbances into normal modes, we can simplify the equations (22)- (24) by assuming that the perturbation
quantities are of the form:

(W Tx) =(w(2). T (2). % (2))exp| ik x +k,y)+ ot | (25)
After introducing the expressions (25) into equations (22) - (24), we obtain:
Pr'IG(DZ -1<2)w=(D2 -k2)2 w-k’R, T +K’R X (26)
oT +fw=(D’ -kz)T+szT+f3DX @7)
GX+f4w=NAL:(D2-k2)T+L: (Dz-kz))( (28)

Where k is the resultant dimensionless wave number, such that:

k=.k; +k,
The equations (26) - (28) will be solved subject to the following boundary conditions:

- For the rigid-rigid case;

w=Dw=T =D(X+N,7)=0 at z=0;1 (29)
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- For the free-free case;
w=D'w=T =D(X+N,7)=0 at z=0;1 (30)

- For the rigid-free case;
w=Dw=T =D(X+N,7)=0 at z=0 (31)
w=D'w=T =D(X+N,7)=0 at z=1 (32)

- For the free-rigid case;

w=D'w=T =D(X+N,T)=0 at z=0 (33)
w=Dw=T =D(X+N,7)=0 at z=I (34)

2.3 METHOD OF SOLUTION

Very recently, Nield and Kuznetsov [9] and Agarwal [12] observed that the oscillatory convection is ruled out for
nanofluids with this new type of boundary conditions due to very large nanofluid Lewis number, so the stationary convection

is the predominant mode. Hence, the equations (26)-(28) become:

(D2 —kz)zw—szaTJrszNX:O (35)
fw—(D -k’ )T ~£,DT ~£,DX =0 (36)
f£w—N,L, (D2 —kz)T—Lj (D2 —kz)X =0 (37)

We can solve the equations (35)-(37) which are subjected to the conditions (29),(30),(31) and (32) or (33) and (34) by
using a suitable change of variables that makes the number of variables equal to the number of boundary conditions, to

obtain a set of eight first order ordinary differential equations which we can write it in the following form:

—u;(z)=a,u.(z) ; 1<i,j<8 (38)
With:
a; =a;(z kR ,H,Ng,L,R,N,)
The solution of the system (38) in matrix notation can be written as follows:
U=BC (39)

Where B is a square matrix of order 8 x 8, U is the unknown vector column of our problem and C is a constant vector
column, such that:

If we assume that the matrix B is written in the following form:

B - [(uf (z))mJ (40)

1<j<8
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Therefore, the use of four boundary conditionsat z=0 , allows us to write each variable u, (Z) as a linear combination
for four functions uf (z) , such that:
u/(0)=3, (41)
Where §; is the Kronecker delta symbol.

After introducing the new expressions of the variables U, (Z) in the system (38), we will obtain the following equations:

4 W(2)=an(2) ; 15iLj<8 (42)
dz
For each value of j , we must solve a set of eight first order ordinary differential equations which are subjected to the

initial conditions (41) , by approaching the variables uf (z) with real power series defined in the interval [0,1] and
truncated at the order N , such that:

(e)-S @

A linear combination of the solutions uf (z) satisfying the boundary conditions (29),(30),(31) and (32) or (33) and (34) at

z=1 leads to a homogeneous algebraic system for the coefficients of the combination. A necessary condition for the
existence of nontrivial solution is the vanishing of the determinant which can be formally written as:

f(R,.k,H;, Ny, L,R,N,)=0 (44)

If we give to each control parameter (HS,NB,Le,RN,NA) its value, we can plot the neutral curve of the stationary
convection by the numerical research of the smallest real positive value of the thermal Rayleigh number R, which
corresponds to a fixed wave number k and verifies the dispersion relation (44). After that, we will find a set of points
(k , Ra)which help us to plot our curve and find the critical value (kc , Rac) which characterizes the onset of the convective

stationary instability, this critical value represents the minimum value of the obtained curve.

2.4 VALIDATION OF THE METHOD

The truncation order N which correspond to the convergence of our method is determined, when the five digits after
the comma of the critical thermal Rayleigh number R for the regular fluids and the nanofluids remain unchanged. To
validate our method, we compared our results with those obtained by Dhananjay Yadav et al. [13] , Nanjundappa et al. [14]
and Shivakumara and Suma [15] concerning the effect of an internal heat source on the onset of convective instability for the
Rayleigh-Bénard problem in the case of regular fluids . To make this careful comparison, we must take in the governing
equations the following restrictions :

-1
L. =Ry=N,=N;=0

According to the results described below in Tables 1-3 , we notice that there is a very good agreement between our

results and the previous works, hence the accuracy of the used method. From the Tables 1-5 we show also that the

convergence of the results depends greatly on the truncation order N of the power series, of the type of boundary
conditions and also of the values of the heat source strength H, such that for the large values of the heat source strength

H,, it’s necessary to choose the greater values of the truncation order N .
Finally, to ensure the accuracy of the obtained critical values for the studied nanofluids, we will take as truncation order:
NT=32; N"=32; N"=40 ; N" =39
For the regular fluids, we take:
NT=33; N"=34; N"=40 ; N" =40
The precedent values are taken when we want to vary the values of the heat source strength H, from 0 until 60 .
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Table 1. The comparison of critical values of Rayleigh number and the corresponding wave number with Dhananjay Yadav et al. [13],
for the regular fluids in the free-free case.

y Hg = 10 H, = 30 H, = 60
l(C Rac l(C Rac kC Rac

25 2.33980 589.42172 2.65696 381.12919 2.82870 232.13291
26 2.33980 589.42128 2.65723 381.11801 2.82960 232.11021
27 2.33980 589.42136 2.65716 381.12038 2.82936 232.11534
28 2.33980 589.42135 2.65717 381.12011 2.82941 232.11466
29 2.33980 589.42136 2.65717 381.12019 2.82940 232.11485
30 2.33980 589.42135 2.65717 381.12013 2.82940 232.11473
31 2.33980 589.42136 2.65717 381.12015 2.82940 232.11478
32 2.33980 589.42136 2.65717 381.12015 2.82940 232.11476
33 2.33980 589.42136 2.65717 381.12015 2.82940 232.11477
34 2.33980 589.42136 2.65717 381.12015 2.82940 232.11477
35 2.33980 589.42136 2.65717 381.12015 2.82940 232.11477

Exactvalue  2.33980 589.42136 2.65717 381.12015 2.82940 232.11477
[13] 2.340 589.42140 2.657 381.12034 2.829 232.11493

Table 2. The comparison of critical values of Rayleigh number and the corresponding wave number with Nanjundappa et al. [14],
for the regular fluids in the rigid-free case.

y Hg = 10 H, = 30 H, = 60
l(C Rac l(C Rac kC Rac

28 2.73329 725.60229 2.84905 398.66163 291616 233.61378
29 2.73329 725.60191 2.84911 398.65950 2.91629 233.61103
30 2.73329 725.60200 2.84909 398.66005 2.91626 233.61179
31 2.73329 725.60198 2.84910 398.65989 2.91627 233.61155
32 2.73329 725.60199 2.84910 398.65994 2.91626 233.61163
33 2.73329 725.60198 2.84910 398.65992 2.91626 233.61160
34 2.73329 725.60198 2.84910 398.65993 2.91626 233.61161
35 2.73329 725.60198 2.84910 398.65993 2.91626 233.61161
36 2.73329 725.60198 2.84910 398.65993 2.91626 233.61161
37 2.73329 725.60198 2.84910 398.65993 2.91626 233.61161
38 2.73329 725.60198 2.84910 398.65993 2.91626 233.61161

Exactvalue  2.73329 725.60198 2.84910 398.65993 2.91626 233.61161
[14] 2733 725.602 2.849 398.656 2.916 233.607

Table 3. The comparison of critical values of Rayleigh number and the corresponding wave number with Shivakumara and Suma [15],
for the regular fluids in the rigid-rigid case.

. Hg = 10 H = 30 Hg = 60
kC Rac l(C Rac kC Rac
32 3.30366 1462.86185 3.65903 878.32096 3.81811 521.43168
33 3.30367 1462.86065 3.65943 878.29763 3.81924 521.39348
34 3.30367 1462.86100 3.65930 878.30521 3.81885 521.40638
35 3.30367 1462.86090 3.65934 878.30282 3.81898 521.40217
36 3.30367 1462.86093 3.65933 878.30355 3.81894 521.40350
37 3.30367 1462.86092 3.65933 878.30333 3.81895 521.40309
38 3.30367 1462.86092 3.65933 878.30340 3.81895 521.40321
39 3.30367 1462.86092 3.65933 878.30338 3.81895 521.40318
40 3.30367 1462.86092 3.65933 878.30338 3.81895 521.40319
2 3.30367 1462.86092 3.65933 878.30338 3.81895 521.40319
42 3.30367 1462.86092 3.65933 878.30338 3.81895 521.40319
Exactvalue  3.30367 1462.86092 3.65933 878.30338 3.81895 521.40319
[15] 3.304 1462.8609 3.659 878.3034 3.819 521.4032
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Table 4. Our critical values of Rayleigh number and their corresponding wave numbers, for the regular fluids in the free-rigid case.

y Hg = 10 H, = 30 H, = 60
l(C Rac l(C Rac kC Rac
33 3.06865 1359.69718 3.72382 895.33746 3.91095 53239833
34 3.06865 1359.69716 3.72385 895.33528 3.91107 532.39402
35 3.06865 1359.69716 3.72384 895.33596 3.91103 532.39543
36 3.06865 1359.69716 3.72384 895.33575 3.91104 532.39497
37 3.06865 1359.69716 3.72384 895.33581 3.91104 532.39512
38 3.06865 1359.69716 3.72384 895.33579 3.91104 532.39507
39 3.06865 1359.69716 3.72384 895.33580 3.91104 532.39509
40 3.06865 1359.69716 3.72384 895.33580 3.91104 532.39508
4 3.06865 1359.69716 3.72384 895.33580 3.91104 532.39508
42 3.06865 1359.69716 3.72384 895.33580 3.91104 532.39508
43 3.06865 1359.69716 3.72384 895.33580 3.91104 532.39508
Exactvalue  3.06865 1359.69716 3.72384 895.33580 3.91104 532.39508

Table 5. Our critical values of Rayleigh number and their corresponding wave numbers, for a nanofluid characterized by
Ng=0.01, Le =100, Ry = 1and N, = 0.1 in the case where H, = 60.

N rigid - free case free - free case rigid - rigid case free - rigid case

l<C Rac kC Rac kC Rac kC RHC
28 2.80814 210.83329 2.72348 209.34743 3.75811 507.04647 3.89864 516.57120
29 2.80820 210.83222 2.72348 209.34749 3.80448 505.21135 3.88236 517.24573
30 2.80818 210.83249 2.72348 209.34743 3.78529 505.91379 3.88860 516.99352
31 2.80819 210.83241 2.72348 209.34746 3.79232 505.66083 3.88621 517.08463
32 2.80818 210.83243 2.72348 209.34745 3.78973 505.74994 3.88710 517.05166
33 2.80818 210.83243 2.72348 209.34745 3.79065 505.71956 3.88678 517.06318
34 2.80818 210.83243 2.72348 209.34745 3.79033 505.72974 3.88689 517.05937
35 2.80818 210.83243 2.72348 209.34745 3.79044 505.72643 3.88685 517.06061
36 2.80818 210.83243 2.72348 209.34745 3.79040 505.72748 3.88686 517.06021
37 2.80818 210.83243 2.72348 209.34745 3.79041 505.72715 3.88686 517.06034
38 2.80818 210.83243 2.72348 209.34745 3.79041 505.72725 3.88686 517.06030
39 2.80818 210.83243 2.72348 209.34745 3.79041 505.72722 3.88686 517.06031
40 2.80818 210.83243 2.72348 209.34745 3.79041 505.72723 3.88686 517.06031
41 2.80818 210.83243 2.72348 209.34745 3.79041 505.72723 3.88686 517.06031
42 2.80818 210.83243 2.72348 209.34745 3.79041 505.72723 3.88686 517.06031
Exact value 2.80818 210.83243 2.72348 209.34745 3.79041 505.72723 3.88686 517.06031

3 RESULTS AND DISCUSSION

To study the effect of a parameter (HS,NB,Le,RN,NA) on the onset of the convective instability in a confined medium
filled of a Newtonian nanofluid layer, we must plot in Figs 2-5 the variation of the critical thermal Rayleigh number R . as a
function of the heat source strength H, for different values of this parameter and compare the obtained results with those
of the regular fluids . For this purpose , we will consider a reference nanofluid characterised by Ny =0.01,L, =100,
Ry =1, N, =0.1 and then plot the variations of the critical thermal Rayleigh number R with the heat source strength
H, in the interval [0,60] for different values of the modified particle-density increment Ny in Fig.2, the Lewis number L,

in Fig.3, the concentration Rayleigh number R in Fig.4 and the modified diffusivity ratio N, in Fig.5.

In Figs 2-5 , we plot also the variation of the critical thermal Rayleigh number as a function of the heat source strength

R, =f(H,) for the regular fluids in the free-free, rigid-free , free-rigid and rigid-rigid cases .
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Whatever the type of boundary conditions (free-free, free-rigid, rigid-free and rigid-rigid cases), we find graphically
through the Fig.2 that there is no effect of the modified particle-density increment N, on the convective instability for the

nanofluids . To determine the exact effect of the parameter N, , we must determine some points of this figure (Fig.2) in the
Table 6, this table shows that an increase in the modified particle-density increment N, allows us to destabilize somewhat
the nanofluids, this result may be explained by its low value (N ~ 10° —1071)which appears only in the perturbed energy
equation (22) as a product with the inverse of the Lewis number (L, ~ 10° —103) near the temperature gradient and the
volume fraction gradient of nanoparticles, so the effect of this parameter on the onset of convection will be very small .

From the expression of the parameter N , we can conclude that the use of the nanoparticles which are characterized

by a small heat capacity or a low concentration allows us to stabilize the nanofluids. In this investigation, we find that an
increase in the volume fraction of nanoparticles allows us to destabilize the nanofluids, because an increase in this
parameter, increases also the Brownian motion and the thermophoresis of nanoparticles, which cause a destabilizing effect.

This result confirm that the regular fluids are more stable than the nanofluids (Figs 2-5 ).
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Table 6. Our critical values of Rayleigh number and their corresponding wave numbers for different values of H; and Ng
in the case where Le =100, Ry =1 and N, = 0.1

H N rigid - free case free - free case rigid - rigid case free - rigid case
° 8 l(C Rac kC Rac kC Rac kC Rac
0.001 2.67019 868.23698 2.21235 612.95190 3.16654 1617.17374 2.77297 1287.33036
5 0.01 2.67010 868.15803 2.21228 612.88725 3.16648 1617.12214 2.77291 1287.27961
0.05 2.66969 867.80727 2.21194 612.60007 3.16621 1616.89286 2.77263 1287.05412
0.1 2.66917 867.36917 2.21152 612.24143 3.16586 1616.60635 2.77229 1286.77234
0.001 2.70287 704.08944 2.29377 564.96389 3.29376 1447.20290 3.05868 1344.08947
10 0.01 2.70272 703.97837 2.29360 564.85213 3.29363 1447.11652 3.05851 1343.98845
0.05 2.70203 703.48509 2.29286 564.35589 3.29307 1446.73267 3.05774 1343.53955
0.1 2.70117 702.86931 2.29194 563.73663 3.29236 1446.25307 3.05678 1342.97863
0.001 2.75835 495.74501 2.47269 449.99520 3.51634 1102.83891 3.52177 1112.74519
2 0.01 2.75808 495.60259 2.47232 449.83936 3.51608 1102.72062 3.52146 1112.62084
0.05 2.75685 494.97046 2.47071 449.14781 3.51495 1102.19514 3.52010 1112.06835
0.1 2.75531 494.18225 2.46871 448.28582 3.51354 1101.53864 3.51840 1111.37814
0.001 2.78919 376.34840 2.59140 358.12995 3.64300 862.74391 3.71058 880.18494
30 0.01 2.78880 376.19216 2.59087 357.95880 3.64262 862.61267 3.71016 880.05258
0.05 2.78703 375.49909 2.58848 357.19978 3.64095 862.02984 3.70832 879.46461
0.1 2.78484 374.63590 2.58552 356.25473 3.63887 861.30179 3.70602 878.73029
0.001 2.80410 300.63983 2.66040 292.50648 3.71579 701.65629 3.80204 717.25897
40 0.01 2.80358 300.47652 2.65971 292.32878 3.71530 701.51829 3.80151 717.12187
0.05 2.80129 299.75255 2.65664 291.54118 3.71310 700.90555 3.79918 716.51294
0.1 2.79846 298.85192 2.65282 290.56163 3.71036 700.14032 3.79626 715.75268
0.001 2.80950 248.71784 2.70077 245.02390 3.76109 588.73776 3.85442 601.99348
50 0.01 2.80887 248.55068 2.69993 244.84306 3.76048 588.59567 3.85378 601.85331
0.05 2.80607 247.81013 2.69620 244.04200 3.75776 587.96475 3.85094 601.23082
0.1 2.80260 246.88995 2.69158 243.04687 3.75437 587.17742 3.84740 600.45386
0.001 2.80893 211.00167 2.72446 209.52978 3.79114 505.87202 3.88761 517.20258
60 0.01 2.80818 210.83243 2.72348 209.34745 3.79041 505.72723 3.88686 517.06031
0.05 2.80489 210.08320 2.71912 208.54039 3.78717 505.08454 3.88352 516.42857
0.1 2.80082 209.15333 2.71374 207.53895 3.78314 504.28275 3.87935 515.64032

From Fig. 3 and Fig. 4 , we conclude that an increase either in the Lewis number L_ or in the concentration Rayleigh
number R allows us to accelerate the onset of the convection, hence they have a destabilizing effect .Therefore, to ensure
the stability of the system, we can use a nanofluid characterized by a less thermal diffusivity or constituted of less dense
nanoparticles.

When the modified diffusivity ratio N, increases, the temperature difference between the horizontal plates also
increases. The Fig.5 shows that an increase in the modified diffusivity ratio N, allows us to decrease the critical thermal
Rayleigh number R

ac /

this result can be explained by the increase in the buoyancy forces which destabilizes the system.

Our results show the existence of the free-rigid case which is different to the rigid-free case as long as there is an internal
heat source which produces a constant volumetric heat. In the free-rigid case, we find that the variation of the critical

thermal Rayleigh number R as a function of the heat source strength H_ presents a maximum value at H but for the

s max /

other cases we conclude that the precedent variation R, = f(H,)is always a decreasing function, so an increase in the heat

source strength H; has a destabilizing effect on the nanofluids and the regular fluids except for the free-rigid case where the
system can’t be destabilized only if the heat source strength H, exceeds a certain value H, . =8.89329 for the reference

nanofluid and H, _ =8.86444 for the regular fluids (Fig.6), such that after this value we observe that the curve which

corresponds to the rigid-rigid case intersects with that of the free-rigid case at H, =17.24510 for the reference nanofluid
and H, =17.33104 for the regular fluids , and then becomes its asymptotic branch. For the other cases, we find that the

decrease of the curve which corresponds to the rigid-free case tends asymptotically towards to the curve of the free-free
case such that the two curves can intersected at H, =73.20448 for the reference nanofluid and H; =75.31258 for the

regular fluids .
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Fig.6. The variation of R, as a function of H; for the regular fluids (a) and the reference nanofluid (b)
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In this study , we show that the presence of nanoparticles in a base fluid can return the heat source strength H, among
the principal driving forces which produce the onset of convection (Table 7).

Table 7. Some critical values for the regular fluids and the reference nanofluid (Ng= 0.01, L, = 100, Ry=1,N, =0.1)

Hg = 540.7361 Hg = 642.24 Hg =2167.713 Hg = 2293.226
Nanofluid Regular fluids Nanofluid Regular fluids Nanofluid  Regular fluids Nanofluid  Regular fluids
Ric Ric Ric Ric R Rac R R
4.107° 30.22019 4.1075 25.97285 4.107° 17.13401 4.1075 16.47411

4 CONCLUSIONS

In this paper, we have examined the effect of an internal heat source on the onset of convection in a Newtonian
nanofluid layer heated uniformly from below in the case where the nanoparticle flux is assumed to be zero on the horizontal
boundaries. The presence of friction on the horizontal walls is a factor producing the thermal stability of the system, where
the rigid-rigid case is the more stable case compared with the free-rigid, rigid-free and free-free cases, such that:

RL>RL>RI>R]
This study, shows that the free-rigid case appears only when we have an internal heat source which allows us to
minimize the friction effect on the bottom wall and increase it on the top wall, such that from a certain value of the heat
source strength H_ we observe a reconciliation between the rigid-free and free-free cases and also between the rigid-rigid

and free-rigid cases.

To ensure the stability of the system , we can use the nanoparticles which are characterized by a small heat capacity or a
low concentration, we can also use the nanofluids which are having a less thermal diffusivity or constituted of less dense
nanoparticles.

An increase in the volume fraction of nanoparticles, in the buoyancy forces, in the Brownian motion or in the
thermophoresis of nanoparticles allows us to destabilize the nanofluids, such that the regular fluids are more stable than the
nanofluids.
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In this investigation we find that the presence of nanoparticles in a base fluid can return the heat source strength H_

among the principal driving forces which produce the onset of convection.

The used method to solve the convection problem with the new model of boundary conditions of nanoparticles gives
more accurate results, because the absolute error of the obtained critical values which characterize the onset of the
convection is of the order of 10‘6, Hence, we can use our results as a reference to validate other results of the similar
problems .

NOMENCLATURE

Symbols :

c Specific heat of nanofluid(J/kg.K)

Brownian diffusion coefficient (m?/s)

w

D
D Thermophoretic diffusion coefficient (m?/s)

=

g Acceleration due to gravity (m/s?)
H Layer depth (m)
HS

Dimensionless constant heat source strength

K Thermal conductivity of Nanofluid (W /K. m)
k: Wave number in x* direction (m~1)

k; Wave number in y* direction (m™1)

k: Critical wave number (m~1)

L, Lewis number
N, Modified diffusivity ratio
Ny Modified particle-density increment

P Pressure (Pa)

P Prandtl number

Q, Volumetric internal heat source (J/m?)
R, Thermal Rayleigh number
R, Critical Rayleigh number
Ry, Density Rayleigh number

Ry Concentration Rayleigh number

\a Velocity vector (m/s)

T Temperature (K)

¢ Time (s)

u,v,w Velocity components (m/s)

x,y,z Cartesian coordinates (m)

ISSN : 2028-9324 Vol. 16 No. 4, Jun. 2016 755



The Effect of the Boundary Conditions on the Onset of Convection in a Newtonian Nanofluid Layer in Presence of an
Internal Heat Source: A Revised Model

Greek symbols :

o Thermal diffusivity of nanofluid (m?/s)

B Thermal expansion coefficient of base fluid (K1)

n Viscosity of nanofluid (Pa.s)

p Nanofluid density (kg/m3)

Py Nanofluid density at reference temperature(kg/m3)
pc Heat capacity of nanofluid (J/m3.K)

G Growth rate of disturbances (s™1)

X* Volume fraction of nanoparticles

Superscripts :

* Dimensional variable

Perturbation variable

ff Free - Free case

rf Rigid - Free case

fr Free - Rigid case

rre Rigid - Rigid case
Subscripts :

c Cold

h Hot

ac Critical number

b Basic solution

Base fluid

p Nanoparticle
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