Two stochastic models for EURO/MAD exchange rate, measure of their forecast accuracy and producing prediction intervals for futures exchange rate values

Mohammed Bouasabah and Charaf Bensouda

Mathematics Department,
Ibn Tofail University,
Kenitra Morocco

ABSTRACT: Exchange rate in Moroccan economy has been considered a critical push-forward force for domestic inflation which leads to the depreciation of currency value. Exchange rate is the price for which the currency of a country can be exchanged for another country's currency in the foreign exchange market. This article seeks to adopt two stochastic models for estimation of exchange rate EURO/MAD. Firstly, it aims at the investigation of stochastic models (two models) to show the variation of exchange rate, and, secondly, try to draw a comparison between these models in terms of error estimation performances and, as a result, to recommend a stochastic model for exchange rate EURO/MAD.

In addition to our precedent results (for reasons of clarity we repeat our previous work here), we produced a prediction intervals for each future value of exchange rate EURO/MAD.

In this paper, the geometric Brownian motion (stochastic process without mean reversion propriety) and Vasicek process (stochastic process with mean reversion speed), are used to model the exchange rate EURO / MAD, then they are compared in terms of average estimation error.

In order to calculate models parameters daily close price of the Euro/MAD from 01/12/2008 to 01/03/2016 (2242 values) can be taken from Casablanca stock exchange and ,hence, two stochastic models for exchange rate is to be derived, and compared. According to simulation results, we can finally recommend one of the two models.

KEYWORDS: Exchange rate, Vasicek, Brownian motion, Euromad, Stochastic process.

1 INTRODUCTION

Exchange rates are of great importance for the economy of a country and particularly its foreign trade, in respect of goods or services. The volume of products imported or exported to another country depends on the exchange rate of these countries. This may be an inflation factor in the country whose rate drops, or a factor of commercial, financial and political instability in some cases. For this reason it’s necessary to anticipate the future exchange rates. To do mathematical modeling assumes that the exchange rate is a stochastic process (random variable time-dependent). In this work we are interested in the price in which a euro traded against the Moroccan currency MAD. To achieve this, two stochastic models belonging to different families (with and mean reversion property) are used and compared in terms of error estimation: Geometric Brownian motion and the process of Vasicek.
Two stochastic models for EURO/MAD exchange rate, measure of their forecast accuracy and producing prediction intervals for futures exchange rate values

2 THEORETICAL PRINCIPLES OF RESEARCH

2.1 THE GEOMETRIC BROWNIAN MOTION (GBM)

The Geometric Brownian Motion (GBM) is a fundamental example of a stochastic process without mean reversion properties. The GBM is the underlying process from which is derived to form the Black and Scholes formula for pricing European options [1]. Let the exchange rate be assigned as x_t, where $\ln(x_t)$ obeys the following defined equation.

$$d\ln(x_t) = \mu dt + \sigma dw_t$$

Here μ and σ are constants and W_t is a standard Brownian motion.

2.2 VASICEK MODEL

The objective behind adopting the Vasicek model in this research is to model the variation of exchange rates as a stochastic process with a mean reversion. Vasicek model was the first to capture the value of mean reversion. In a linear equation, the dynamics of exchange rate is being described by this model, as it can be explicitly solved [2].

$$dx_t = \alpha(x_t - \mu)dt + \sigma dw_t$$

Where α, μ and x_0 constants and dW_t represent an increment to a standard Brownian motion W_t. The exchange rate x_t will fluctuate randomly, but, over the long run, tends to revert to some level μ. The speed of reversion is known as α and the short-term standard deviation is σ where both influence the reversion.

This paper brings into play accurate data from 01/12/2008 to 01/03/2016 (2243 values) taken from DirectFN (provider of financial information) [3], and Maximum likelihood function is used to calculate parameters of both GBM and Vasicek model.

3 METHODOLOGY

3.1 NO MEAN REVERSION – GEOMETRIC BROWNIAN MOTION

Let the continuous-time exchange rate be assigned as x_t, where $\ln(x_t)$ obeys the following equation:

$$d\ln(x_t) = \mu dt + \sigma dw_t$$ (1)

Here, μ and σ are constants and dw_t is a standard Brownian motion. In ordinary calculating, one can derive that:

$$\frac{d\ln(x_t)}{x_t} = \mu dt + \sigma dw_t$$

So

$$\frac{dx_t}{x_t} = \mu dt + \sigma dw_t$$

If we adopt Ito’s Lemma as mentioned in J.C. Hull [1], the equation will be as follows:

$$d\ln(x_t) = (\mu - \frac{1}{2}\sigma^2)dt + \sigma dw_t$$

with $\gamma = \mu - \frac{1}{2}\sigma^2$.

This means that $\ln(x_t)$ is an Arithmetic Brownian Motion. By integrating equation between u and t, and according to Damiano Brigo et al [4], gives:

$$\ln(x_u) - \ln(x_t) = (\mu - \frac{1}{2}\sigma^2)(u - t) + \sigma(w_u - w_t) \sim \mathcal{N}\left((\mu - \frac{1}{2}\sigma^2)(u - t); \sigma^2(u - t)\right)$$

By considering $u = T$, $t = 0$ and taking the exponent on equation above leads to:

$$x_T = x_0\exp\left((\mu - \frac{1}{2}\sigma^2)T + \sigma W_T\right) \quad (w_0=0)$$

The mean and the variance of x_T according to Damiano Brigo et al (2007) [4] are:

$$E(x_T) = x_0 e^{\mu T} \quad \text{And} \quad \text{Var}(x_T) = e^{2\mu T}x_0^2(e^{\sigma^2T} - 1)$$

Therefore, the version of a simulation equation for the GBM, using the fact that is $dW = \sqrt{\Delta t}$ [1]:

$$\gamma = \mu - \frac{1}{2}\sigma^2$$
\[\ln(x_{t+1}) - \ln(x_t) = y\Delta t + \sigma Z\sqrt{\Delta t} \]

By taking the exponent of both sides, it results:

\[x_{t+1} = x_t \exp(y\Delta t + \sigma Z\sqrt{\Delta t}) \]

3.1.1 **MAXIMUM LIKELIHOOD ESTIMATION (MLE) – GEOMETRIC BROWNIAN MOTION**

According to Damiano Brigo et al (2007) [4], the parameters that must be optimized are \(\theta(\mu, \sigma) \) for the GBM. Let the logarithmic return be given as:

\[y_t = \ln(x_t) - \ln(x_{t-1}) \]

Which is normally distributed for all \(y_{t1}, y_{t2} \ldots y_{tn} \). And these later values assumed independent. The likelihood function will be denoted as:

\[L(\theta) = f_\theta(y_{t1}, y_{t2} \ldots y_{tn}) = \prod_{i=1}^{n} f_\theta(y_{ti}) = \prod_{i=1}^{n} f(y_{ti} | \theta) \]

Here, \(f_\theta \) is the probability density function. Let \(\theta = (\mu, \sigma) \), then the probability density function \(f_\theta \) is:

\[f_\theta(y_{ti}) = \frac{1}{x_{ti}\sigma\sqrt{2\pi \Delta t}} \exp\left[-\frac{(y_{ti} - \frac{\Delta t}{\sigma^2} + \frac{\Delta t}{2}\sigma^2)^2}{2\sigma^2} \right] \]

The likelihood function needs to be maximized to obtain the optimal estimators \(\hat{\theta}(\hat{\mu}, \hat{\sigma}) \).

First, we have to determine \(\hat{\omega} \) and \(\hat{\gamma} \):

\[\hat{\omega} = (\mu - \frac{1}{2}\sigma^2)\Delta t \quad \text{with} \quad \hat{\omega} = \sum_{i=1}^{n} \frac{y_{ti}}{n} = \frac{\ln(x_{tn}) - \ln(x_{t0})}{n} \]

\[\hat{\gamma} = \sigma^2\Delta t \quad \text{with} \quad \hat{\gamma} = \sum_{i=1}^{n} \frac{(y_{ti} - \hat{\omega})^2}{n} \]

Then the MLE’s parameters are:

\[\hat{\sigma}^2 = \frac{\hat{\gamma}}{\Delta t} \quad \text{And} \quad \hat{\mu} = \frac{1}{2}\sigma^2 + \frac{\hat{\omega}}{\Delta t} \]

3.1.2 **EURO/MAD EXCHANGE RATE: GEOMETRIC BROWNIAN MOTION**

In order to calculate \(\hat{\mu} \) and \(\hat{\sigma} \) daily close price of the Euro/MAD from 01/06/2006 to 01/03/2016 can be taken directly from DirectFN [3] for Casablanca Stock Exchange. And considering \(\Delta t = \frac{1}{365} \) (daily data)

3.1.2.1 **SIMULATION RESULTS**

Using the daily close price of the Euro/MAD from 01/06/2006 to 01/03/2016 and Microsoft Excel’s solver, we obtain:

\(\hat{\mu} = 0.0009594 \quad \text{and} \quad \hat{\sigma} = 0.01069047 \)

The simulation equation for Euro with Moroccan currency according to GBM is:

\[x_{t+1} = x_t e^{(-0.00438583\Delta t + 0.1033947295 Z_i \sqrt{\Delta t})} \quad Z_i \sim N(0,1) \quad \text{And} \quad \Delta t = \frac{1}{365} \]
Two stochastic models for EURO/MAD exchange rate, measure of their forecast accuracy and producing prediction intervals for futures exchange rate values

3.1.2.2 GBM MODEL, ERROR PERFORMANCES

Let \(\hat{x}_t \) be the estimated value of exchange rate euro-mad at time \(t \):

The sum of squared errors (SSE).

\[
SSE = \sum_{i=1}^{2243} (x_{ti} - \hat{x}_{ti})^2 = 16,8722
\]

The mean absolute percentage error (MAPE).

\[
MAPE = \frac{1}{2243} \sum_{i=1}^{2243} \left| \frac{x_{ti} - \hat{x}_{ti}}{x_{ti}} \right| \times 100 = 0,5548 \%
\]

3.2 MEAN REVERSION – THE VASICEK MODEL

The Vasicek model, owing its name to Vasicek (1977), is one of the earliest stochastic models of the short-term interest rate, which is a suitable model to apply the maximum likelihood estimation (MLE) [5].

\[
dx_t = \alpha(\mu - x_t)dt + \sigma dw_t \tag{1}
\]

Solving the Ornstein-Uhlenbeck Stochastic Differential Equation includes taking the derivative of \(e^{\alpha t}x_t \) and rearranging the order gives:

\[
e^{\alpha t}dx_t = d(e^{\alpha t}x_t) - x_t \alpha e^{\alpha t}dt \tag{2}
\]

And multiplying (1) by \(e^{\alpha t} \)

\[
e^{\alpha t}dx_t = e^{\alpha t}\alpha(\mu - x_t)dt - e^{\alpha t}\sigma dw_t \tag{3}
\]

By using equations (2) and (3).

\[
d(e^{\alpha t}x_t) = \alpha e^{\alpha t}\mu dt + e^{\alpha t}\sigma dw_t
\]

If an integral is taken from time 0 to \(t \) gives:

\[
e^{\alpha t}x_t = x_0 + \int_{0}^{t} e^{\alpha s}\mu ds + \int_{0}^{t} e^{\alpha s}\sigma dw_s
\]

And this implies

\[
x_t = x_0e^{-\alpha t} + \int_{0}^{t} ae^{-\alpha t}e^{\alpha s}\mu ds + \int_{0}^{t} e^{\alpha s} e^{-\alpha(t-s)}\sigma dw_s = x_0e^{-\alpha t} + \int_{0}^{t} \alpha e^{-\alpha(t-s)}\mu ds + \int_{0}^{t} e^{-\alpha(t-s)}\sigma dw_s
\]
The solution of the stochastic differential equation between \(s\) and \(t\), if \(0 < s < t\):

\[
x_t = x_s e^{-a(t-s)} + \mu (1 - e^{-a(t-s)}) + \sigma \int_s^t e^{-a(u-s)} \, dw_u
\]

(4)

\[
f_t e^{-a(t-s)} \, dw_s \text{ follows a normal distribution with a mean of zero and a variance such that:}
\]

\[
E \left[\left(f_t e^{-a(t-s)} \, dw_s \right)^2 \right] = f_t^2 (e^{-a(t-s)})^2 ds = \frac{\sigma^2}{2a} (1 - e^{-2at}). \text{(Ito isometric property)}
\]

The conditional mean and variance of \(x_t\) given \(x_0\) is:

\[
E_0[x_t] = \mu + (x_0 - \mu) e^{-at}
\]

\[
Var_0[x_t] = \frac{\sigma^2}{2a} (1 - e^{-2at}) \quad \alpha > 0
\]

The conditional mean and variance of \(x_t\) given \(x_s\) are:

\[
E_s[x_t] = \mu + (x_s - \mu) e^{-a(t-s)}
\]

\[
Var_s[x_t] = \frac{\sigma^2}{2a} (1 - e^{-2a(t-s)}) \quad \alpha > 0
\]

Calculations for the maximum likelihood estimates are made according to M.A. van den Berg (2007) “Calibrating the Ornstein-Uhlenbeck model” [6]. As follows, the conditional density functions for \(x_t\) given \(x_{t-1}\) is:

\[
f(x_t|x_{t-1}; \mu, \alpha, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(x_t - x_{t-1} e^{-\alpha\Delta t} - \mu(1-e^{-\alpha\Delta t}))^2}{2\sigma^2} \right]
\]

where

\[
\sigma^2 = \tilde{\sigma}^2 \frac{(1-e^{-2\tilde{\alpha}\Delta t})}{2\alpha}
\]

(*)

The log-likelihood function is given by:

\[
\ln L(\mu, \alpha, \sigma) = \sum_{i=1}^{n} \ln f(x_t|x_{t-1}; \mu, \alpha, \sigma) = -\frac{n}{2} \ln(2\pi) - n\ln(\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} \left(x_t - x_{t-1} e^{-\alpha\Delta t} - \mu(1-e^{-\alpha\Delta t}) \right)^2
\]

The log-likelihood function have to be maximized by taking partial derivatives of equation with respect to \(\mu\), \(\alpha\) and \(\sigma\) and which yield three equations all equal to zero:

\[
\frac{\partial \ln L(\mu, \alpha, \sigma)}{\partial \mu} |_{\hat{\mu}} = 0
\]

\[
\frac{\partial \ln L(\mu, \alpha, \sigma)}{\partial \alpha} |_{\hat{\alpha}} = 0
\]

\[
\frac{\partial \ln L(\mu, \alpha, \sigma)}{\partial \sigma} |_{\hat{\sigma}} = 0
\]

Then, the estimators will be:

\[
\hat{\mu} = \frac{\sum_{i=1}^{n} (x_{t_i} - x_{t_{i-1}} e^{-\alpha\Delta t})} {n(1-e^{-\alpha\Delta t})}
\]

\[
\hat{\alpha} = -\frac{1}{\Delta t} \ln \left[\frac{\sum_{i=1}^{n} (x_{t_i} - \hat{\mu})(x_{t_{i-1}} - \hat{\mu})}{\sum_{i=1}^{n} (x_{t_{i-1}} - \hat{\mu})^2} \right]
\]

\[
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \left[x_{t_i} - e^{-\alpha\Delta t}(x_{t_{i-1}} - \hat{\mu}) \right]^2
\]

The following formulas are used to simplify further calculations:

\[
S_x = \sum_{i=1}^{n} x_{t_i} \quad S_{xx} = \sum_{i=1}^{n} x_{t_i}^2 \quad S_{yy} = \sum_{i=1}^{n} y_{t_i}^2 \quad S_{xy} = \sum_{i=1}^{n} x_{t_i} y_{t_i} \quad S_y = \sum_{i=1}^{n} y_{t_i}
\]

By using equations above, the MLE’s parameters are:

\[
\hat{\mu} = \frac{S_y e^{-\alpha\Delta t} - S_x}{n(1-e^{-\alpha\Delta t})} \quad (a)
\]

\[
\hat{\alpha} = -\frac{1}{\Delta t} \ln \left[\frac{S_{yy} - \hat{\alpha}^2 S_{xx} - \hat{\alpha} S_x + n \hat{\sigma}^2}{S_{xx} - 2 \hat{\alpha} S_x + n \hat{\sigma}^2} \right] \quad (b)
\]

\[
\hat{\sigma}^2 = \frac{1}{n} \left[S_{yy} - 2 e^{-\alpha\Delta t} S_{xy} + e^{-2\alpha\Delta t} S_{xx} - 2 \hat{\mu} (1 - e^{-\alpha\Delta t}) (S_y - e^{-\alpha\Delta t} S_x) + n \hat{\sigma}^2 (1 - e^{-2\alpha\Delta t}) \right] \quad (c)
\]
If the equation (b) is substituted into (a), it yields:

\[\hat{\mu} = \frac{s_{xy}}{n(s_{xx} - s_{yy}) - (s_{xx} - s_{yy})} \] (d)

\[\hat{\alpha} = -\frac{1}{\Delta t} \ln \left(\frac{S_{yy} - \bar{r}(S_x + S_y) + n\hat{\mu}^2}{S_{xx} - 2\bar{r}s_x + n\hat{\alpha}^2} \right) \] (e)

And using (*), the third estimate parameter \(\hat{\sigma}^2 \) is:

\[
\hat{\sigma}^2 = \frac{2\hat{\alpha}}{n(1 - e^{-2\hat{\alpha}\Delta t})} \left[S_{yy} - 2e^{-\hat{\alpha}\Delta t}s_{xy} + e^{-2\hat{\alpha}\Delta t}s_{xx} - 2\hat{\mu}(1 - e^{-\hat{\alpha}\Delta t})(S_y - e^{-\hat{\alpha}\Delta t}s_x) + n\hat{\mu}^2(1 - e^{-\hat{\alpha}\Delta t})^2 \right]
\]

3.2.1 VASICEK SIMULATION EQUATION

According to M.A. van den Berg [6], the linear relationship between two consecutive observations, \(x_{t+1} \) and \(x_t \), is derived from (4) and is given as:

\[x_{t+1} = x_t e^{-\hat{\alpha}\Delta t} + \hat{\mu}(1 - e^{-\hat{\alpha}\Delta t}) + \hat{\sigma} \sqrt{\frac{1 - e^{-2\hat{\alpha}\Delta t}}{2\hat{\alpha}}} Z_t \]

\[Z_t \sim N(0,1) \]

Note: \(Z_t \) are the same random values used for GBM simulated equation.

To calculate \(\hat{\mu}, \hat{\alpha} \) and \(\hat{\sigma} \), the same daily close price in Moroccan dirham of Euro from 12/01/2008 to 03/01/2016 are used with Microsoft Excel’s solver, and hence stochastic model for exchange rate is to be derived.

3.2.2 SIMULATION RESULTS AND DISCUSSION

MLE values of the data set can be computed using Microsoft Excel’s solver as:

\[\hat{\alpha} = 26,892,8501 \quad \hat{\mu} = 11,115,7017 \quad \hat{\sigma} = 1,172,973 \]

\[dx_t = 26,892,8501(11,115,7017 - x_t)dt + 1,172,973dw \]

Consequently, due to this stochastic model, the exchange rate is fluctuating around the value 11,1157. With a mean reversion speed equals to 26,892,8501 and an intensity of stochastic part is 1,172,973. Moreover, this model can be used to forecast the exchange rate in Morocco. Variation of simulated exchange rate (with R) is shown in this Figure. With \(x_0=11,056 \) [at 01/12/2008]

![Exchange rate EURO/MAD simulation using R](image)

Deterministic part of the final stochastic differential equation is going to be:

\[dx_t = 26,892,8501(11,115,7017 - x_t)dt \]

And hence deterministic process is going to be (with \(x_0=11,056 \) [at 01/12/2008])

\[x_t(t) = -0.0597 e^{-26.8928501t} + 11,115,7017 \]
Therefore, it can be strongly concluded that exchange rate attains to the value 11,1157 for long time periods.

Finally, the simulated equation is:

\[x_{t+1} = x_t e^{-\bar{\theta} \Delta t} + \mu (1 - e^{-\bar{\theta} \Delta t}) + \delta \sqrt{\frac{1 - e^{-2\bar{\theta} \Delta t}}{2\delta}} Z_i \quad Z_i \sim N(0,1) \]

\[x_{t+1} = 0.9289698 \times x_t + 0.78954996 + 0.05920237 \times Z_i \]

3.2.3 Vasicek model, error performances.

Let \(\hat{x}_t \) be the estimated value of exchange rate euro-mad at time \(t \):

The sum of squared errors (SSE).

\[SSE = \sum_{i=1}^{2243} (x_t - \hat{x}_t)^2 = 16,044 \]

The mean absolute percentage error (MAPE).

\[MAPE = \frac{1}{2243} \sum_{i=1}^{2243} \frac{|x_t - \hat{x}_t|}{x_t} \times 100 = 0.5458 \% \]
Two stochastic models for EURO/MAD exchange rate, measure of their forecast accuracy and producing prediction intervals for futures exchange rate values

4 COMPARISON AND DISCUSSION

4.1 COMPARISON

To measure forecast accuracy, we use here two selection criteria: The sum of squared errors (SSE), which is the sum of the squares deviations of predicted from empirical values of data, it is a measure of the discrepancy between the data and an estimation model. A small SSE indicates a tight fit of the model to the data it is used as an optimality criterion in model selection, and the mean absolute percentage error (MAPE) which is a relative measure which expresses errors as a percentage of the actual data, this is its biggest advantage as it provides an easy and intuitive way of judging the extent, or importance of errors [7].

In this study it seems that for both criteria SSE and MAPE, Vasicek model gives the better measure of forecast accuracy compared to GBM model (16,044<16,872 and 0,5458%<0,5548%), and as a conclusion, we recommend this later for exchange rate EURO/MAD, as follow:

\[
dx_t = 26,8928501(11,1157017 - x_t)dt + 1,172973dw \quad dw \text{ is a standard Brownian motion}
\]

\[
x_{t+1} = 0,9289698 * x_t + 0,78954996 + 0,05920237 * Z_t \quad Z_t \sim N(0,1)
\]

EURO/MAD Exchange rate : GBM Model

Simulated equation:

\[
x_{t+1} = x_t e^{(0.00002928885568 + 0.1033477552 \epsilon \sqrt{\Delta t})}
\]

\[Z_t \sim N(0,1) \text{ And } \Delta t = \frac{1}{365}\]

The sum of squared errors (SSE).

\[
SSE = \sum_{t=1}^{2243} (x_t - \hat{x}_t)^2 = 16,8722
\]

The mean absolute percentage error (MAPE).

\[
MAPE = \frac{1}{2243} \sum_{t=1}^{2243} \left| \frac{x_t - \hat{x}_t}{x_t} \right| * 100 = 0,5548\%
\]

EURO/MAD Exchange rate : Vasicek Model

Simulated equation:

\[
x_{t+1} = 0,9289698 * x_t + 0,78954996 + 0,05920237 * Z_t
\]

\[Z_t \sim N(0,1)\]

The sum of squared errors (SSE).

\[
SSE = \sum_{t=1}^{2243} (x_t - \hat{x}_t)^2 = 16,044
\]

The mean absolute percentage error (MAPE).

\[
MAPE = \frac{1}{2243} \sum_{t=1}^{2243} \left| \frac{x_t - \hat{x}_t}{x_t} \right| * 100 = 0,5458\%
\]

4.2 DISCUSSION AND RECOMMENDATION

To measure forecast accuracy, we use here two selection criteria: The sum of squared errors (SSE), which is the sum of the squares deviations of predicted from empirical values of data, it is a measure of the discrepancy between the data and an estimation model. A small SSE indicates a tight fit of the model to the data it is used as an optimality criterion in model selection, and the mean absolute percentage error (MAPE) which is a relative measure which expresses errors as a percentage of the actual data, this is its biggest advantage as it provides an easy and intuitive way of judging the extent, or importance of errors [7].

In this study it seems that for both criteria SSE and MAPE, Vasicek model gives the better measure of forecast accuracy compared to GBM model (16,044<16,8722 and 0,5458%<0,5548%), and as a conclusion, we recommend this later for exchange rate EURO/MAD, as follow:

\[
dx_t = 26,8928501(11,1157017 - x_t)dt + 1,172973dw \quad dw \text{ is a standard Brownian motion}
\]

\[
x_{t+1} = 0,9289698 * x_t + 0,78954996 + 0,05920237 * Z_t \quad Z_t \sim N(0,1)
\]

5 PREDICTION INTERVAL OF EXCHANGE RATE VALUES

First we look at the link between the values predicted by our model (Vasicek Model) and the real values of the exchange rate.

We note \(Y = \{y_1, y_2, \ldots, y_n\} \) where \(y_i \) for \(i \in \{1, \ldots, n\} \) (with \(n = 2243 \)) the real values of the exchange rate, and \(X = \{x_1, x_2, \ldots, x_n\} \) where \(x_i \) for \(i \in \{1, \ldots, n\} \) the predicted values by Vasicek model.

To do this, we plot the point cloud and calculate the determination coefficient \(R^2 \).

The figure below shows a strong linear relationship between \(Y \) and \(X \).
According to the figure above, the cloud of point form a straight line, for which we can derive the following equation:

\[y = x_i - 8 \times 10^{-5} \] (*)

The relationship between the two variables is positive. An increase in the value of \(x \) is likely to be related to an increase in the value of \(y \) which is confirmed by the determination coefficient very close to 1 (\(R^2 = 0.861 \)).

After having shown that there is a strong linear relationship between \(X \) and \(Y \), we will use this result to calculate exchange rate values (using linear regression equation) and consequently the prediction intervals of the real values of the exchange rate EURO/MAD.

We note \(\hat{y}_i \) for \(i \in \{1, \ldots, n\} \) the values given by equation (*), so we have:

\[\hat{y}_i = x_i - 8 \times 10^{-5} \]

Using this relationship we can calculate all the values \(\hat{y}_i \) corresponding to \(x_i \), for \(i \in \{1, \ldots, n\} \)

To find a prediction interval for a future value \(y_{n+1} \) of the exchange rate we use the following result [8]:

\[y_{n+1} \in \left[\hat{y}_{n+1} \pm t_{n-2,1-\alpha/2} \frac{s}{\sqrt{1 + \frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2}}} \right] \]

With:
- \(\hat{y}_{n+1} \): Value given by least square equation.
- \(t_{n-2,1-\alpha/2} \): is the \(1 - \frac{\alpha}{2} \)-quantile of the student with \(n-2 \) degree of freedom.
- \(s = \sqrt{\frac{SSR}{n-2}} \): is the root of the sums of squared residuals (SSR) divided by \(n - 2 \).
- \(n = 2379 \).

To deliver results, Microsoft Excel Solver is used as follows:
- To calculate the \(\hat{y}_i \) we call function: TREND().
- The Excel function LINEST() provide regression parameters.
- The function T.INV.2T () provide quintiles of Student.
- The function DEVSQ() calculate the sums of squared residuals.
6 Results

The Excel function LINEST() provide the flowing regression parameters.

<table>
<thead>
<tr>
<th>Slope (a)</th>
<th>1.00000536</th>
<th>Inter (b)</th>
<th>-8.0179E-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard error of the slope</td>
<td>0.00548459</td>
<td>standard error of b</td>
<td>0.0943286</td>
</tr>
<tr>
<td>R²</td>
<td>0.86109205</td>
<td>Standard deviation of residuals values</td>
<td>0.05923388</td>
</tr>
<tr>
<td>F (Fisher)</td>
<td>13891.9859</td>
<td>degree of freedom</td>
<td>2241</td>
</tr>
<tr>
<td>unexplained variation</td>
<td>48.741576</td>
<td>explained variation</td>
<td>7.86289131</td>
</tr>
</tbody>
</table>

So we can now calculate prediction interval parameters:

- n = 2243
- \(x_p : 11,1174254 \)
- \(\sum_{i=1}^{n} (x_i - \bar{x})^2 : \text{Somme des carrées des écarts} = 48,7415376 \)
- \(t_{0.95} = 1.96102307 \)
- \(S = 0.05923388 \)

A future value \(y_{n+1} \) of EURO/MAD exchange rate corresponding to \(x_{n+1} \) have 95% of the chance to be in the following prediction interval:

\[
y_{n+1} \in \left[\hat{y}_{n+1} \pm 1.96102307 \times 0.05923388 \times \sqrt{\frac{1}{2243} + \frac{(x_{n+1} - 11,1174254)^2}{48,7415376}} \right]
\]

i.e

\[
\hat{y}_{n+1} - 0.11615901 \times \sqrt{1 + \frac{1}{2243} + \frac{(x_{n+1} - 11,1174254)^2}{48,7415376}} \leq y_{n+1} \\
\leq \hat{y}_{n+1} + 0.11615901 \times \sqrt{1 + \frac{1}{2243} + \frac{(x_{n+1} - 11,1174254)^2}{48,7415376}}
\]

Note:

The value \(x_{n+1} \) is predicted by the model of Vasicek and the corresponding image \(\hat{y}_{n+1} \) is derived by the linear regression relationship.

7 Conclusion

This work has focused on two stochastic models. The first is a model without a mean reversion property (GBM model), and the second is a model based on the Vasicek process with speed of mean reversion, these theatrical models are used and calibrated with daily close prices for exchange rate EURO / MAD, and as a result elaborating the two models for EURO/MAD exchange rate forecast.

Equally important, the work introduces a comparison in terms of estimation error (deviations of predicted from empirical values of data) to choose one of these two models, it turned out that Vasicek model notably shows the lowest square sum of errors (SSE) and also the smallest mean absolute average percentage error (MAPE).

As a consequence, and according to our measure of forecast accuracy, we can recommend the Vasicek model compared to GBM model for modeling exchange rate EURO/MAD.

Finally, thanks to the important relationship between the predicted and real values of exchange rate, we have achieved prediction intervals of 95% for future values of the EURO/MAD exchange rate.
REFERENCES

