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ABSTRACT: Sensitivity analysis was performed on the mathematical model of Cholera to determine the influence and 

importance of each parameter on the basic reproduction number (R0) in the dynamical spread of Cholera. Basic Reproduction 

Number (R0) was obtained using next generation matrix method (NGM). The disease free equilibrium was analyzed for 

stability and the analysis shows that the disease free equilibrium point is globally asymptotically stable whenever the basic 

reproduction number is less than unity i.e (R0<1). Also, there exist endemic equilibrium points of the model whenever R0>1. 

The relative sensitivity indices of the model with respect to each parameter in the basic reproduction number is calculated in 

order to find the most sensitive parameter which the medical practitioners and policy health makers should work on in order 

to reduce the spread of cholera in the society. The result shows that effective contact rate and fraction of individuals with 

low immunity are the most sensitive parameters in the reproduction number. 

Numerical simulation was carried out by MAPLE 17 software using Runge-kutta method of order four to show the effects of 

contact rate and fraction of individuals with low immunity in the dynamical spread of Cholera. This work will allow the health 

policy makers to know the best control measure to be adopted in order to have disease free environment. 

KEYWORDS: Cholera, Reproduction Number, Critical Point, Sensitivity analysis, Stability. 

1 INTRODUCTION 

Cholera is a deadly disease that is majorly caused by the bacterium called Vibrio Cholera. It belongs to a class of water-

borne disease which occurs as a result poor sanitation and dirty water. The cholera bacteria release a toxin which makes it 

difficult for the body system to absorb liquids and makes an infected person to become dehydrated. This dehydration can 

lead to loss of life within two or three hours if not given medical attention on time [10]. An estimate of 1.4 to 4.3 million 

cases occurs each year with the total death of 28000 to 142000 worldwide [14]. 

 The bacteria transmission involve two stages which are human and environmental stages which means that cholera 

transmission could be from environment to human and person to person transmission. Its transmission is common in an area 

where is no good environmental sanitation and lack of food/personal hygiene which creates avenue for cholera spread. 

Majorly there are two means of cholera transmission which are water and sea foods that are contaminated by the bacteria 

[9, 2, 5].  

The time frame from the point of exposure to the time of appearance of cholera symptoms (incubation period) ranges 

between the hours of two to five days. The infected person develops the following symptoms after infection which includes: 

watery diarrhea, vomiting, loss of skin elasticity, thirst and muscle cramps [3, 14, 15].  

Cholera can be treated through the use of antibiotics and fluid replacement therapy as this will reduce the spread and the 

death due to cholera infection in the environment [15]. 
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Mathematical modeling has been an important tool in understanding the disease transmission dynamics and also in 

making decision as regards the intervention mechanisms for the control of disease. Sani et al. [12] worked on a deterministic 

mathematical model on cholera dynamics and some control strategies. In their study, a system of four differential equations 

with two control measures which are therapeutic treatment and sanitary measures were considered. Stephen and Nkuba 

[13] also worked on mathematical model for the dynamics of cholera with control measures. They formulated a 

mathematical model that captures some essential dynamics of cholera transmission with public health education campaigns, 

vaccination, sanitation and treatment as control strategies in limiting cholera disease. Madubueze et al. [8] aslo considered 

the bifurcation and stability analysis of the dynamics of cholera model with controls. The existence of backward bifurcation is 

investigated in their work and the numerical simulation performed revealed that combine control measures will help to 

reduce the spread of cholera in the human population. Pransenjit Das and Debasis Mukherjee [11] worked on the qualitative 

analysis of a cholera bacteriophage model. In their work, they concluded that by using phage as a biological control agent in 

endemic areas, one may also influence the temporal dynamics of cholera epidemic while reducing the excessive use of 

chemicals. Adewale et al. [1] worked on the mathematical analysis of the effect of growth rate of vibrio-cholera in the 

dynamical spread of cholera. In their work, they developed a mathematical model that incorporated phage virus which 

serves as a biological control of cholera bacteria in the population; they concluded that phage virus plays a vital role in 

reducing the spread of cholera in the population. Jing et al. [6] worked on the mathematical analysis of a cholera model with 

vaccination. In their work, they performed sensitivity analysis of the basic reproduction number on the parameters involved 

in order to determine the relative importance to disease transmission and showed that an imperfect vaccine is always 

beneficial in reducing disease spread within the community.  

In this paper, we formulated a new five compartmental model for the spread of cholera in order to perform sensitivity 

analysis as to detect the parameters that influence the increase in basic reproduction number, since oR  is the average 

number of secondary infection generated by a single infected individual in his or her infectious period in the population of 

susceptible.     

2 MATHEMATICAL MODEL FORMULATION 

The population size at time t denoted by N(t) is sub-divided into five (5) compartments of Susceptible individual S(t), 

Exposed individual E(t), Infected individual
 

)(tI , Recovered individual R(t) and Bacteria population B(t) so that   

)()()()()( tRtItEtStN +++=
                                                             (1)

 

The susceptible population is increased by the recruitment of people (either by birth or immigration) into the population, 

all recruited individuals are assumed to be susceptible at a rate π , the population of Susceptible is further increased by the 

population of individual that are recovered at the rate (ω ).Finally,  the susceptible population decreases by infection which 

can be acquired following effective contact with infectious individuals only at a rate λ given by  

N

BIE )( 21 ηηβλ ++=                       (2) 

and also by natural death at the rate ( µ ). Hence,                                                                                         

RSS
dt

dS ωµλπ +−−=                                                                                      (3) 

A fraction 1ε of newly infected individuals with low immunity move to the exposed class E, while the remaining fraction  

( 11 ε− ) move to the infected class I. The population of exposed class is reduced by the natural death rate ( µ ) and the 

progression rate (κ ). Hence,  

E
dt

dE
)( µκλε +−= 1                                                                          (4) 

The population of Infected Cholera individual is increased by the remaining fraction of low immunity individual at the rate 

(1- 1ε ) and the progression of exposed cholera individual at the rate ( κ ). The population is decreased by the treatment of 

cholera infected individuals at the rate ( 1τ ), natural death of cholera infected individual at the rate ( µ ) and the disease 

induced death at the rate ( δ ). Hence, 
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IES
dt

dI
)()1( 11 δµτκλε ++−+−=                                                                        (5) 

The population of Recovered Cholera individual is increased by the number of infected individuals that are treated and 

recovered at the rate ( 1τ ). The population is decreased by the loss of immunity of an individual after being recovered from 

cholera at the rate ( ω ) and the natural death of recovered individual at the rate ( µ ). Hence, 

RI
dt

dR
)(1 µωτ +−=                                       (6) 

The population of cholera bacteria is increased by the growth of Vibrio- cholera at the rate g and the contribution of each 

infected individual with the cholera bacteria into Vibrio- cholera environment. The population is further reduced by the 

natural death of the bacteria at the rate ( bµ ). Hence,  

BIgB
dt

dB
bµα −+=                                                                                     (7)                                                       

Thus in summary, the dynamics transmission model is given by the following system of non-linear differential equations. 
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                                                                               (8) 

Table 1: Variables and Descriptions  

Variables Descriptions 

S  Susceptible individuals 

E  Exposed Individuals 

I  Infected Individuals 

R  Recovered Individuals 

B  Bacteria Population 

Table 2: Parameters and Descriptions 

Parameters Descriptions 

π  Recruitment rate into Susceptible 

ω  Recovery rate 

1ε  Fraction of individual with Low immunity 

κ  Progression rate 

1τ  Treatment rate 

δ  Disease induced death rate 

G Growth rate of bacteria 

α  Contribution of each infected in aquatic environment 

bµ  Bacteria death rate 

β  Effective contact rate 

µ  Natural death rate 

1η  Modification parameter of Infected Individuals 

2η  Modification parameter of the Bacteria 
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3 ANALYSIS OF THE MODEL 

Lemma1: The closed set { }:),,,,( 5

µ
π≤∈= + NRBRIESD is positively-invariant and attracting with respect to model (8) 

above. 

Proof: Consider the biologically-feasible region { }:),,,,( 5

µ
π≤∈= + NRBRIESD . We shall show that D is positive invariance 

(i.e all solutions in D for all time t>0). The rate of change of the total population obtained by adding all the equations D in 

model (8), is given  

IN
dt

dN δµπ −−=                                                                                                             (9) 

Therefore, 
dt

dN
<0, whenever the sub total population

µ
π>N . Note that 

dt

dN
 is bounded by Nµπ −  and a standard 

comparison theorem [7] can be used to show that )1()0()( tt eeNtN µµ

µ
π −− −+≤ in particular, 

µ
π≤)(tN if, 

µ
π≤)0(N . 

Therefore, all solution of the model with initial conditions in D remains there for t>0 (i.e the −ω limits sets of the system (8) 

are contained in D). This implies that D is positively-invariant and attracting. In this region, the model can be considered as 

been epidemiologically and mathematically well- posed.                         

3.1 DISEASE FREE EQUILIBRIUM (DFE) 

The DFE of the modeled equation (8) can be obtained by setting the right hand of the model to zero.  

)0,0,0,0,(),,,,( 000000
h

hBRIES
µ
πε ==                                                                                (10)  

3.2 BASIC REPRODUCTION NUMBER ( 0R ) 

 The basic reproduction number 0R  measures the average number of secondary infected individual generated in his/her 

infectious period in the population of susceptible. It is an important tool that determines whether the disease will dies out or 

persists and become endemic. When ,10 <R the disease dies out and whenever 10 >R , the disease persists and become 

endemic. It is obtained by taking the largest dominant eigenvalue of 
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It is given by )( 1
0

−= FVR ρ  where F is the new infection transfer terms; V is the non-singular matrix of the remaining 

transfer terms and ρ is the spectral radius. 

The basic reproduction number  0R  of the model (8) is calculated using next generation matrix [3]. Then, 
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Where ,1 µκ +=k δµτ ++= 32k , µω +=3k and gk b −= µ4  

The eigenvalue of 1−FV are  
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Hence the basic reproduction number  0R  for the normalized model (8) is given by 

0R =
421

14241112141114111212 )(

kkk

kkkkkkkkk εηαηεηκεηεαηκεαηβ +++−+−
                            (15) 

3.3 GLOBAL STABILITY OF THE MODEL  

Here, the global asymptotic stability (GAS) property of the DFE of the Cholera model (8) will be explored. 

Theorem 1:  The disease free of the system (8) is globally stable whenever the 10 <R  and unstable if 10 >R . 

Proof: it follows that RIENS −−−= * at the steady state. The proof is based on using the comparism theorem [7] to prove 

the global stability.  

Using comparison method, we have, 
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Then, 
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According to Driesssche and Watmough [4], all the eigen values of the matrix F – V have negative real parts. It follows that 

the linearized differential inequality system above is stable whenever 1<oR . Consequently, by comparison theorem [7]. We 

have that ,0==== BRIE ( )0,0,0,0→  as ∞→t . Substituting ,0==== BRIE  into (8), we have that )0()( StS →  as

∞→t . Hence, we have a positive invariant region. It follows that disease free equilibrium is globally asymptotically stable 

whenever 10 <R .  

3.4 ENDEMIC EQUILIBRIUM 

In this section, the possible existence of endemic (positive equilibra of the modeled equation (8) where at least one of the 

components of the model is non-zero) will be considered. 

Let ),,,,( ************
1 BRIES=ε represents any arbitrary endemic equilibrium of the model equation. 

Solving the equations of the system at steady-state gives 
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Substituting the expression in (16-19) into (20), we have 
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Dividing each term in (21) by **** Sλ  
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Where, 

Therefore, **
51 λP+ = 0R  

,0
1

5

0** >−=
P

Rλ  Whenever R 0 >1.  

Therefore, there exists an endemic equilibrium Whenever R 0 >1.   

3.5 CHOLERA SENSITIVITY ANALYSIS 

It is necessary to determine how sensitive the threshold quantity basic reproduction number is with respect to its 

parameters, this will help to understand which of the parameters causes reduction in OR  and parameters that increases OR  

and these parameters must give attention in order to have most effective control of the disease. This analysis will help to 

know how important each parameter is to disease transmission. We compute the normalized forward sensitivity index of the 

reproduction number with respect to its parameters. 
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Definition: If a variable ‘c’ depends differentiably on parameter ‘w’, then, the normalized forward  sensitivity index of ‘c’ 

with respect to ‘w’ is denoted by 
c

w

w

c
X C ∂

∂=  

As we have explicit formula for OR  as  

0

0

R

w

dw

dR
X C ×=       (22) 

Sensitivity analysis of each parameter involved in 0R  is therefore calculated and show in the table below. 

Table 3: Values of Numerical Sensitivity of Cholera 

Parameters Sensitivity Values 
µ  -0.038733 

ω  0.000000 

1ε  0.993541 

κ  0.955328 

1τ  -0.001980 

δ  -0.003959 

G -0.007821 

α  0.000000 

bµ  0.007821 

β  0.999910 

1η  0.006335 

2η  0.007038 

4 NUMERICAL SIMULATION 

In order to verify the effect of contact rate and low Immunity rate in the dynamical spread of Cholera, the following set of 

parameters were used 2000=π , 2.0=Cβ , 5.01 =ε , 02.0=hµ , 5.0=κ , 02.0=Cδ , 1.01 =τ , 02.01 =η , 02.02 =η , 

001.0=bµ , g=0.01, 15.0=ω , 0001.0=α . 

 

Figure 1: For the value of 20.0=β               Figure 2: For the value of 25.0=β  
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Figure 3: For the value of 30.0=β                          Figure 4: For the value of 50.01 =ε  

 

Figure 5: For the value of 60.01 =ε             Figure 6: For the value of 70.01 =ε  

5 DISCUSSION AND CONCLUSION 

In this work, five (5) non-linear compartmental models was presented and analyzed to gain insight on the parameters that 

influence the outbreak of cholera in the community. Sensitivity analysis and numerical simulations of the model were carried 

out to determine the effects of parameters on the outbreak of Cholera disease. In figures 1-3 above, the effect of contact 

rate in the human population is considered and it was observed that as the contact rate increases in the human population, 

the susceptible population decreases while the exposed and infected population increases. Also figures 4-6 shows the effect 

of low immunity rate in an individual which reduces the susceptible population. As the immunity in an individual decreases, it 

makes the infected individual in the population to increase. 
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  From our result, it was observed that the effective contact rate and the low immunity rate were the key parameters that 

influenced the dynamical spread of Cholera in the community. In conclusion, efforts should be put in place by health policy 

makers to reduce the rate at which an individual come in contact with the cholera bacteria (Vibrio Cholera) and also work on 

the immunity of an individual in order to have disease free environment. 
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