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ABSTRACT: This paper deals with the deformation of an elastic solid described by Lame equations satisfying the boundary
conditions. By means of the differential operators, we reduce these equations to Poisson equations that we solve using Galerkin
method, i.e. we obtain the components of displacement vector. Furthermore, we compute the strain and stress tensors acting
on the solid which are important in engineering applications. Numerous examples are given in this work.
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1 INTRODUCTION

The theory of elasticity studies the small deformation of a solid which occupies a domain bounded by a surface under
various boundary conditions. For describing the physical phenomena in theory of elasticity one uses the mathematical model
of solid deformation such as Lame equations. It is a well-known fact that a few exact solutions of the Lame equations are known
even now. This has been largely due to the complexity of the system of differential equations. In the absence of general
solution, it is often convenient to experiment with models to obtain information on the deformation phenomena e.g. the
displacement vector, deformation and stress tensors, etc. Lame equations constitute a system of partial differential equations.
The study of these equations is motivated by their role in many applications in various fields of physics and technology. In many
remarkable papers [1-11] the solids and structures are studied intensively.

0ne of the methods for studying partial differential equations is group analysis. This analytical approach based on
symmetries of differential equations was originally introduced by Sophus Lie and further developed by [12-16]. For each system
of partial differential equations there is symmetry group, that acts on the space of its independent and dependent variables,
leaving the form of the system unchanged.

The mixed finite element methods have been proposed by Arnold [17] and Qiu [18] for solving linear elasticity problems.
Bustinza [19] and Yuncheng [20] have developed a general framework of constructing discontinuous Galerkin methods for
solving the linear elasticity problem. Assous [21] used the Nitsche method for studying the Navier-Lame equations.

In the present work, and for the first time to our best knowledge of the literature, we extend the continuous Galerkin
method to vectorial Lame equations.

The paper is organized as follows. In the section 2, we present the theoretical framework describing the deformation of an
elastic solid. In the third section, using the differential operators we reduce Lame equations to Poisson equations. Then
applying Galerkin method to the latter equations subjected to boundary conditions, we establish the integral relations which
allow to obtain the solutions of Lame equations, i.e. the displacement vector. Furthermore, we compute the strain and stress
tensors acting on the solid. In the fourth section, numerous examples are given. In the last section, the concluding remarks
follow.
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2 STATEMENT OF THE PROBLEM

Consider an elastic homogenous body occupying a three-dimensional domain  bounded by a closed differentiable
surface S .

The deformation of a solid is governed by the Lame equations Eglit[22] and Parton[23]:

    0.  FAA  in  (1)

0AA  on S (2)

where   3,,  wvuA ,   3,,  RQPF are the displacement vector and the body force respectively at any

point    321 ,, xxxx ;  0000 ,, wvuA  is the constant displacement vector imposed on S ;  ,  are Lame

coefficients of the solid and  is the solid density.

Let ji , and ji , , 3,2,1, ji be the components of the strain and stress tensors respectively defined by Eglit[22] and

Parton[23] as:
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where ub 1 , vb 2 and wb 3 stands for Kronecker symbol.

3 ANALYTICAL SOLUTION

In this section we provide analytical solutions to the problem (1),(2).

For this purpose, the system (1) can be written in the form

      0.1
1
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u  in  (4)

      0.1
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      0.1
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Applying the operators ,
1x

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2x
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3x
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to the equations (4),(5), (6) respectively and

summing the results, we reduce the previous system to Poisson equation

  FA .
2

. 

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



in  (7)

subject to the following boundary condition

0.  A on S (8)

In order to solve the problem (7) and (8), we consider the following problem

 xf in  (9)

 x0  on S (10)
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The following statement holds

Theorem 1 (Vladimirov [24])

Assume that  Cf ,  SC0 . If the function  has normal derivative to S , a solution  of the problem (9), (10)
is

          

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 dyyfyxGdSy
n
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y

,
,G

0 (11)

where yn stands for the outward normal vector to S at the point Sy and G is Green function of Laplacian operator.

Remark

Let us point out that one can find a solution  through the n-th order linearly independent harmonic homogenous
polynomials, spherical functions, Bessel functions, etc [25].

By virtue of the formula (11), the equations (4)-(6) satisfying the boundary condition (2) become
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Applying the Galerkin method to the problems (12) and (13), (14) and (15), (16) and (17) we obtain the solutions

   xuxu  0 ,    xvxv  0 ,    xwxw  0

where  ,  ,  are twice continuously differentiable functions defined on S satisfying the following integral
relations
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Here we formulate the main result:
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Theorem 2

The displacement vector components u , v , w of the solid deformation described by Lame equations (1) satisfying the
boundary conditions (2) and the components of the strain and stress tensors ij , ij , 3,2,1, ji are defined by

   xuxu  0 ,    xvxv  0 ,    xwxw  0 (21)
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where  ,  ,  are defined from the integral relations (18),(19), (20).

4 APPLICATIONS

In order to compute strain and stress tensors acting on the solid in the engineering applications, we define a solid 
bounded by a closed surface S and the part SS 1 by:

 222
1321

3 0;;: xxxxxRx   ;

 0;;: 321
3

1  xxxRxS  ; 0 , 0 .

Obviously, the projection on the 21 xx plane of a solid  represents a circular section bounded by a circle in which is

inscribed the rectangle 1S .

4.1 EXAMPLE 1

We consider

  21 cossin. 3 xxeA x in  ; (29)

0.  A , 03 x . (30)

We can easily see that

  21
2 cossin. 33 xxeeA xx   (31)
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is the exact solution of the problem.

4.2 EXAMPLE 2

Find the solution of the following problem

  0.  A in  ; (32)

 12. xxA   , 03 x (33)

where  is Heavyside function.

We can write
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as the exact solution of the problem.

4.3 DISPLACEMENT VECTOR, STRAIN AND STRESS TENSORS

We consider the constant body force  000 ,, RQPF  , i.e. 0.  F . Without limiting the generality, we choose
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as a solution of the equation (7) and we impose that A. takes the value 0 on 1S
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satisfying

  0|x 1S  ,   0|x 1S  ,   0|x 1S 

where cba ,, are constants to determine.

By virtue of the formulas (18),( 19) and (20) derived from Galerkin method, the displacement vector components wvu ,,

and the components of the strain and stress tensors ij , ij , , 1, 2,3i j  can be expressed as :
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  2232122 22   xxx , 2112   , 3232 2  ;

  3332133 22   xxx , 3113   , 3232   ;

where a , b , c are defined by:
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       9 5 5 9 7 7 5 9 9 5 3 11 11 3 7 5 2128 1 2 1 1 256

3 135 245 525 2079 1575
                          

 
 

5 CONCLUSION

We have investigated Lame equations that we reduced to Poisson equations using the differential operators. Applying
Galerkin method to the latter equations we obtained the displacement vector components. Doing so, we computed the
components of the strain and stress tensors. Examples have been given in this work proving the efficiency of Galerkin method.
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