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ABSTRACT: This paper deals with abstract version of the Cauchy Problem in fuzzy normed space. We define a Hausdorff measure of non 

compactness for bounded fuzzy set to prove existence of solutions by using a sequential approximation of the abstract problem. As a 
byproduct, we obtain a fuzzy version of the Cauchy-Kowaleskya Theorem for the generalized Hukuhara nonlinear partial differential 
equations. 
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1 INTRODUCTION 

This paper deals with some abstract version of fuzzy Cauchy - Kowaleskya Problem in (abstract) fuzzy normed space for the existence 
of solution to the problem: 

u’gH = A (t, u) t ∈ I ⊂ 𝑅, I =] 0, a0 [, a0 > 0  

u (0) = u0.  
(1) 

In crisp and also in fuzzy cases (1) has been studied by many authors see for instance [3], [4] and [5] for the crisp case and [6], [7] and 
[9] for the fuzzy case. Although, for the fuzzy case, the authors consider the nonlinear function A continuous in both of its variables. This 
paper is concerned with the case where A could be only continuous with respect to u and measurable with respect to t. The lack of 
compactness of the most of fuzzy normed or metric spaces could be a big deal for the existence of solution to the problem (1), and 
therefore a big challenge that should be solved. For this purpose, it is natural to consider (1) under some non-compactness hypothesis. 
In crisp case, such studies have been done by some authors, see for instance [4] and references therein. 

In this paper, we define a Hausdorff measure of non-compactness for bounded fuzzy sets and prove some of its properties. We use 
it to prove the compactness of some sequential of approximate solution of (1) under our hypothesis on A (t, u). 

The paper in organized as follows. 

• In section 2, we give some results on fuzzy normed spaces; we define a Hausdorff measure of non-compactness and prove 
some of its properties. 

• In section 3, we recall some results on generalized Hukuhara differentiability and stat and prove our main results 

• In section 4, we give some applications of our main results for the fuzzy partial differential equations: 

∂tgHu = f (t, x, u, ∂xxgHu (t, x))        (2) 

And : ∂tgHu = F (t, x, u, ∂xgHu (t, x))        (3) 

for u ∈ X = (E1, || · ||) where E1 = 𝑅𝐹. 
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2 PRELIMINARIES 

Let X be a non-empty set. A fuzzy subset of X is a mapping u: X ⟶[0, 1]. where u(x) = 0 correspond to no membership, 0 < u (x) < 1 
to partial membership and u(x) = 1 to full membership; The α-level set [u]α is defined as 

[u]α = {x ∈ X: u(x) ≥ α} for each α ∈ [0, 1] 

Let us denote by En the space of all fuzzy subsets of 𝑅𝑛  satisfying the following conditions 

(1) u maps 𝑅𝑛  onto I = [0, 1]; 

(2) [u]0 is a bounded set of 𝑅𝑛; 

(3) u is normal, that is: there exists at least one point x0 ∈ 𝑅𝑛   such that u(x0) = 1; 

(4) [u]α is a compact subset of 𝑅𝑛   for all α ∈ I; (5) u is fuzzy convex, that is 

 u (λx + (1 − λ)y) ≥ min(u(x),u(y)) for λ ∈ I 

(5) implies that [u]α is convex subset of 𝑅𝑛   (Lakshmikanthan [6]). We have the following representation Theorem. 

Theorem 2.1. [9]  

If u ∈ E, then 

(i) [u]α is a non empty, compact and convex subset of 𝑅𝑛   for all α ∈ I; 

(ii) [u]α2 ⊆ [u]α1  for all 0 ≤ α1 ≤ α2 ≤ 1; 

(iii) if (αn) is an increasing sequence converging to α then [u]α = Tn≥1 [u]αn  . 

Let us consider the mappings u+
αi, u−

αi : ]0, 1] ⟶ 𝑅  such that −∞ < uα
−
i ≤ u+

αi < +∞, and let . Then 

 Iiαi ⊂ 𝑅 is a real interval and in view of Theorem 2.1 we can consider 

for all 0 < αi ≤ 1 and [   

The supremum metric on En is defined by 

 

where || w||∞ = max1≤i≤n |wi| w  ∈ 𝑅𝑛. 

D∞ is a metric on En (see Taghavi et al.[8]). Let us consider the pseudo-norm 

||u|| = D∞(u,˜0), 

Where 

0~(𝑠) = {
0𝑖𝑓𝑠 = 0

≠ 0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then || · ||n satisfies the following properties.  

Theorem 2.2.  

|| · ||n : En ⟶ R + is such that : 

(1)   || · ||n = 0  iff  u = 0~. 

 for all λ ∈ R and u ∈ En. 

(3) || u ⊕ v ||n ≤ || u ||n + ||v||n, for all u, v ∈ En. 
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(4) | ||u||n − ||v||n | ≤ D∞(u, v), for all u, v ∈ En. 

, for all a, b ∈ R and u ∈ En. 

 for all u, v ∈ En and  is the generalized Hukuhara difference of u and v. 

Proof.  

(1)    ||u||n = D∞(u,0~) = sup0<α≤1 (max{||u−
α||∞, ||uα

+||∞)} and D∞(u,0~) = 0 iff ||u−
α||∞ = 0 = ||u+

α||∞, therefore u = 0~. 

(2) For all λ ∈ R and u ∈ En, 

 

(3) For all u, v ∈ En, 

 

(4) For all u, v ∈ En, 

| ||u||n – ||v||n | = |D∞(u, 0~) − D∞(v, 0~)| ≤ D∞(u, v) 

(5) For all a, b ∈ R and 𝑢~ ∈ En, 

 

(6) We show that . For all  is equivalent to the existence of c ≠ 0~ 

such that u = v ⊕ c. 

Hence 0 and . 

Hence 

 

Let us consider En  with the pseudo-norm ||·||n  then the fuzzy space (En, || · ||n) is not linear. 

On the other hand (En, D∞) is a complete metric space. Let us denote by We define an  open ball in X with center 

a ∈ X and radius R by 

B(a; R) = {u ∈ En | D∞(u, a) < R} 
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The closed ball is defined by 

B¯(a; R) = cl(B(a; R)) 

Definition 2.3.  

A subset B ⊂ X is uniformly bounded if there exists a constant β such that 

B ⊂ B(0~; β) 

Let B ⊂ X be the set of all uniformly bounded subsets of X, we define the diameter of B ⊂ X by 

 

Definition 2.4.  

Let {B (ai; εi)}i∈I, ai ∈ En, ε ∈ 𝑅 +, εi > 0} be a family of opens balls in X and let B ⊂ X be such that B ⊂  ⋁i∈I B(ai; εi), then {B(ai; εi) } i∈I  is a 
ε−cover of B. 

In general, if {Ui) i∈I ⊂ X is a family in X such that B ⊂ ⋁i∈I 𝑈i, then {(𝑈i)}i∈I is a cover of B. 

Since X is not a compact space, we define a fuzzy non compactness measure: 

Definition 2.5.  

Let B ∈ B be a uniformly bounded set of X. The mapping β : B ⟶ R + defined by β(B) = inf{d > 0 such that B is covered by a finite 
number of fuzzy subset of diameter less than d} is a Hausdorff measure of non compactness. 

Proposition 2.6.  

Let β : B ⟶ R+ be the Hausdorff measure of non compactness of the Definition 2.5. Then 

a) β(B) = 0 iff B is (relatively) compact.  

b) β is a semi-norm, that is 

 for all B ∈ B and λ ∈ R. 

(ii) β(B1 ⊕ B2) ≤ β(B1) + β(B2) for all B1 ∈ B and B2 ∈ B. 

c) If B1 ⊂ B2 then β(B1) ≤ β(B2). 

d) β(B1 ∨ B2) = max(β(B1), β(B2)) 

e) β is continuous with respect to D∞. 

Proof.  

We observe that (c), (d) and (e) are easy consequences of the definition of β and properties of fuzzy sets. So we prove (a) and (b). 

(a) β(B) = 0 if and only if = 0 for all u and v ∈ B that is D∞(u, v) = 0 which means that any open ball centered at u 
contains v, for all v ∈ B. There for, one can find a finite family of sets B1 = B(u; r), B2 = ∅,...,Bp ⊂ ∅ such that . Hence 

(a). 

(b) (i)  By the property (2) of || · ||n, we have 

 

Let B1, B2,··· , Bp ⊂ X and ε > 0 be such that  and diamBi ≤ β(B) + ε.  

Since , we have 
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Therefore 

 

Hence β(λB) ≤ |λ|β(B) since ε is arbitrary. 

If λ 6= 0, then 

 

Therefore 

 

Hence (b) is proved. 

 be a finite family of subsets of X such that  , and let  another 
family of subsets of X such that  . Since , by the 

property (3) of || · ||n  we have 

 

Hence (ii) is proved, since ε is arbitrary. 

3 THE CAUCHY PROBLEM 

3.1 GENERALIZED HUKUHARA DERIVATIVE 

Definition 3.1. [2]  

Let u, v ∈ X 

iff  

In the term of α−level set, we have 

(a) For  . 

(b) In En, the existence of  does not imply   in general. 

Definition 3.2. [6]  

A mapping F : I ⟶ En is Hukuhara differentiable at t0 ∈ I if there exists  F 0(t0) ∈ En such that 
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exist and are equal to F’(t0). Limits are taken in (En,D∞). 

From Definition 3.2, one gets the differential of the multivariate mapping Fα, α ∈ [0, 1] given by 

DFα(t) = [F 0(t)] α  

On the other hand, we have 

Theorem 3.3. [6]  

Let F : I ⟶En 

(a) For all t ∈ I, there exists β > 0 such that the H-difference  and  
F (t − h) exist for all 0 ≤ h < β. 

(b) The set-valued mapping Fα, α ∈ [0, 1] are uniformly differentiable, that is, there exists DFα such that, there exists δ > 0, and 

 

and 

 

for all ε > 0 and 0 ≤ h < δ. 

That is 

 = 0    (4) 

and 

 .   (5) 

Theorem 3.4. [1]  

Let F: I ⟶E1 and denote Fα(t) = [fα
−(t), fα

+(t)], α ∈ [0, 1]. Then F is differentiable if fα
−, fα

+ are differentiable and, we say that: 

(a) F is ((i) − gH)−differentiable at t0 ∈ I, if 

    (6) 

(b) F is ((ii) − gH)−differentiable at t0 ∈ I, if 

    (7) 

Definition 3.5. [1]  

A point t0 ∈ I is a switching point for F 0 if in any neighborhood V of t0 in the interior of I, there exist two points t1 and t2 such that t1 < t0 

< t2 and I1 (6) holds at t1 and (7) doesnot hold at t2 or (7) holds and ( 6) doesnot hold. 

II1 (7) holds at t1 and (6) doesnot hold at t2 or (6) holds and (7) doesnot hold. 

 



Cauchy-Kowaleskya problem in fuzzy normed spaces 

 
 
 

ISSN : 2028-9324 Vol. 34 No. 2, Nov. 2021 360 
 
 
 

Theorem 3.6. [6]  

Assume F : I⟶E1 differentiable and doesnot have a switching point then, if F is integrable over I, we have 

 

Proof. For all α ∈ [0, 1] fixed, if there is no switching point, then we may prove that 

   (8) 

3.2 MAIN RESULTS 

Let X = (E1, || · ||1) and consider the fuzzy differential problem 

u’gH
 = A(t, u) t ∈ I      (9)  

u(t0) = u0, 

Where 

A : I × X ⟶ X such, I ⊂ 𝑅 and t0 ∈ I an open subset of 𝑅. 

A(t, ·) : X ⟶ X is continuous. 

A(·, u) : I⟶X is strongly measurable. 

We consider the Cauchy problem (9) under the following hypothesis on A : 

(H1)  ||A(t, u)||1 ≤ C||u||1 + M, where C > 0, and M > 0 are real. 

(H2)  There exists K > 0 such that β(A(I × B)) ≤ Kβ(B) for any B ∈ 𝐵. 

(H3)  There is no switching point. 

Our main result can be formulate as follows. 

Theorem 3.7.  

Assume (H1)-(H3) hold, then (9) has at least one solution. 

We shall need some preliminary lemmas. 

Lemma 3.8.  

Assume (H1) and (H3) hold, then there exists an approximate solution of (9) in [t0, t0 + α] for some α > 0 small. 

Proof.  

Without lost of generality, let t0 = 0, u(0) = 0~;  and B ⊂ B(0~, δ) for some δ > 0, be a bounded set in and  

T0 = [0, a0] ⊂ [0, α]. Let us partition T0 into subintervals 0 < t1 < t2 < ··· < tN = a0. For any t ∈ [tj, tj+1], j = 1, 2, ..., N, )) is well 

defined, measurable on t for every u ∈ B and continuous on u ∈ B for a.e. . Therefore, we can define the 

sequence (un(t))t∈I, by: 

0~    if t ≤ 0 

))  if s = 0, t ∈ [tk, tk+1]  

0~  if t > a0 

and for j = 1, 2, ..., N we have un(tk) ∈ B(0~, δ). Clearly T0 = [0, a0] ≠∅ since 0 ∈ T0. We observe that 
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  (10) 

We may define  to partition T0. 

We first have to prove that: 

(i) un is uniformly continuous on ]−∞, a0]. 

(ii) un is piecewise derivable on T0. 

(i)  For all t, t0 ∈ T0, we have 

 

Let us note by 

 and  

Hence  

D∞
+(un(t), un(t0))  = ||(un)+

α(t) − (un)α
+(tk) + (un)+

α(tk) − (un)+
α(t0) ||∞ 

= || (t − tk) A+
α (tk, un(tk)) + (tk − t0) A+

α(tk, un(tk))||∞ 

= || (t − t0) A+
α (tk, un(tk)) ||∞ 

= |t − t0|||A+
α (tk, un(tk)) ||∞. 

Similarly 

 

Therefore 

 

For  we have  

Thus un(t) is uniformly continuous on T0. Since un(t) = ˜0 for all t ≤ 0, we have, un(t) uniformly continuous on ]−∞, a0]. 

(ii)  For all , consider h > 0 small enough such that t + h and , then ) is well 

defined on  and 

 

We have 

k(un)±
α(t + h) − (un)±

α(t) − hA±
α(tk, un(tk))k∞ = k[(t + h − t) − h]A±

α(tk, un(tk))k∞ = 0 
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Hence 

 

So that 

 

Similarly 

 

Therefore, assuming that there is no switching point at tk and tk+1 for all 1 ≤ k ≤ N, then we have 

    (11) 

Lemma 3.9.  

Assume (H1) and (H2) hold. If un(t) is an approximate solution of (9), piecewise differentiable such that, there is no switching point at 
tk and tk+1 for 1 ≤ k ≤ N − 1, then 

 

Proof.  

Let t0 = 0, t > 0 and a partition of T = [0, t] defined by 0 < t1 < t2 ··· < tN = t such that  for N > 0 large 
enough, and un(t) derivable on ]tj, tj+1[, j = 1, 2··· ,N − 1. Assume that (  )) is bounded and measurable, which is possible by (H1), the 
definition of un(t) and (11) and ) has no switching point. Then by the Aumann definition of fuzzy integral we have 

 un(tk+1) = un(tk) ⊕∫ (𝑢𝑛)𝑔𝐻(𝑠)𝑑𝑠
𝑡𝑘+1
𝑡𝑘

 

And by Lemma 3.8, and continuity of integral we have 

 

Therefore 
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for all t such that ]0, t [ ⊂ [0, a0].  

Proof of Theorem 3.7 

The standard way to prove existence of solution of (9) by mean of approximate solution is to prove that 

1. (un(t)) n≥1 is uniformly bounded and equi-continuous on [0, a0]. 

2. Using Ascoli-Arzela Theorem, (un(t)) n≥1 converges or has a subsequence converging to a solution of (9). 

Unfortunately, X is not a compact space and (20) is not sufficient to have convergence. We must use a non-compactness argument. 

Consider the differential equation 

 

By (H3) and Theorem 3.6, we have 

 

and 

 

By (H1), there exist C > 0 and M > 0 reals such that 

 

Since un (0) =0~, we have 

 

By the Gronwall inequality, we have 

||un(t)||1 ≤ a0(M + ε)eCt ≤ a0(M + ε)eaC = M0 

Therefore (un(t))n≥1 is uniformly bounded. For t, t0 ∈ [0, a0], we have 

 

For δ > 0 such that |t − t0| < δ and , we have 

 

Thus (un(t))n≥1 is equi-continuous. 

Let N > 0 in N, t ∈ [0, a0] and define BN(t) = {un(t) : n ≥ N}. Then BN(0) = 0~  and BN([0, a0]) is bounded. Let w(t) = β(BN(t)), then w(t) is 
continuous. 

Indeed, by the property (b)(ii) of β, we have, for all n ≥ N 
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Since BN([0, a0]) is a bounded set, there exists d0 > 0 such that β(BN([0, a0])) ≤ d0. Therefore 

If |w(t) − w(s)| ≤ |t − s|Kd0 

Hence , and |t − s| < δ, we have |w(t) − w(s)| < ε, for all ε > 0 

Now   and   are well defined for all h > 0 such that [t − h, t + h] ⊂ [0, a0].  

Let 

. 

Then 

 

Let us choose h > 0 such that Ih = [t − h, t] ⊂ [0, a0] and β(un(Ih)) < εn for all n ≥ N and εn → 0 as n → ∞, then 

β(BN(Ih)) ≤ β(A(Ih × BN(Ih) ⊕ un(Ih)) ≤ β(A(Ih × BN(Ih))) + β(un(Ih)) ≤ Kβ(BN(Ih) + εn 

Using the equicontinuity of (un(t))n≥1, we have BN(Ih) → BN(t) as h → 0+ with respect to the Hausdorff distance D∞. Therefore : 

D−w(t) ≤ Kw(t) + εn, for all n ≥ N 

Integrating over [0, t] for all t ∈ [0, a0], and taking into account that w(0) = 0, we have 

 

Applying the Gronwall inequality, we have 

w(t) ≤ εn a0 eKa0 

Since εn → 0 as n → ∞, we have 

β({un(t)}) → 0 as n → ∞ 

Thus (un(t)) n≥1 is relatively compact. Taking a subsequence, if necessary, we may assume that (un(t))n≥1 converges to u(t) ∈ E1. 

Let B ⊂ B (0~, ρ) be a bounded set, using (H1) in B, we have 

||A(s, un(s))||1 ≤ C||un(s)||1 + M 

≤ cρ + M = Mρ 
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for all n ≥ N, and s ∈ [0, a0] such that un(s) ∈ B. By (9) we have 

 

Using the fuzzy dominate convergence (see e.g. [10]) we have 

 

Assume that 

(H4) A : I × X −→ X is locally-Lipschitz continuous on u. We have 

Theorem 3.10.  

Assume that A satisfies (H1), (H3) and (H4), then (9) has at least one solution on  [0, a0]. 

Proof.  

By Theorem 3.7, it suffices to show that (H4) implies (H2). Let L > 0 be the Lipschitz constant of A and B be a bounded set in X. 

 a finite covering of B of diameter dj, and d = infj dj. Then, for all  and

  

Hence β(A(I × B)) ≤ Lβ(B). 

Therefore, if we choose L = K, we have β(A(I × B)) ≤ Kβ(B). Hence (H2) and we are done.  

4 APPLICATIONS TO FUZZY NONLINEAR EVOLUTION EQUATIONS 

4.1 GENERALIZED HUKUHARA PARTIAL DERIVATIVES 

Definition 4.1. [1]  

A fuzzy valued function of two variables is a relation that assigns to each ordered pair of real number in a set D ⊂ R2, a unique fuzzy 
number denoted by f (x, t). The set D is then the domain of f and Rf ⊂ E1 such that Rf = {f (x, t) | (x, t) ∈ D} is the range of f. 

The α−level set for f is represented by , for all α ∈ [0, 1] and (x, t) ∈ D. Note that    and . 

Definition 4.2. [1]  

Let f : D⟶ E1 be a fuzzy valued function of two variables. We say that L ∈ E1 is the limit of f(x,t) as (x,t) ⟶ (x0,t0) if for every ε > 0, 
there is δ(ε) > 0 such that if (x, t) ∈ D with  ||(x, t) − (x0,t0)|| < δ, then  

Definition 4.3. [1]  

A fuzzy valued function f : D ⟶ E1 is fuzzy-continuous at (x0,t0) ∈ D if lim(x,t)→(x0,t0) f(x, t) = f(x0, t0). f is fuzzy-continuous on D if it is 
fuzzy-continuous at each point of D. 

Definition 4.4. [1]  

Let f : D ⟶E1 be a fuzzy valued function. If fα
−(x, t) and fα

+(x, t) are differentiable with respect to x and t, then we say that f(x, t) is 

(I − PgH)−derivable with respect to x if 
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(I − PgH)−derivable with respect to t if 

 

(II− PgH)−derivable with respect to x if 

  

(II − PgH)−derivable with respect to t if 

 

We assume that ∂xf (x, t) is (P − gH)−derivable at every (x, t) ∈ D without switching point throughout the section. We have the following 
definition. 

Definition 4.5. [1]  

∂xgHf (x, t) is 

(I − PgH)−derivable with respect to x if for all (x, t) ∈ D 

    (12) 

(II − PgH)−derivable with respect to x if for all (x, t) ∈ D 

    (13) 

Lemma 4.6. [1]  

Let f: D ⟶ E1 be a fuzzy-continuous. If f is (P − gH) −derivable with respect to t, without switching point on [a, τ] ⊂ [a, b] ⊂ R with 
fuzzy-continuous derivative, then 

    (14) 

4.2 CAUCHY-KOWALESKYA THEOREMS 

Let u : D ⊂ R × R+ ⟶ E1 be a fuzzy valued function, and define a fuzzy differential relation on D by 

     (15) 

where g: E1  ⟶  E1 is a nonlinear fuzzy function with fuzzy variable. We use the following initial value 

u (x, 0) = u0 ∈ E1 

Let , where kuk = D∞(u, ˜0). We define a fuzzy operator A by 

D(A) = {u ∈ X: ∂xxgHu, g(u) ∈ X} 

with 
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We consider the Cauchy Problem 

𝑢̇(t) = Au(t) t ∈ I ⊂ 𝑅, I = ]0, a0[, a0 > 0       (16)  

u(0) = u0, 

where 𝑢̇(t) = ∂tgHu(x, t). 

We assume that g satisfies the following assumptions. 

(G1) g : X  ⟶  X is locally Lipschitz-continuous.  

(G2) There exists M0 > 0 and C > 0 such that 

||g(u)|| ≤ C||u|| + M0. 

Lemma 4.7.  

If (G1) and (G2) hold, then (H1) and (H2) are satisfied. 

Proof.  

Set k = 1 in (15), then we have 

Au(t) = A(t, u(x, t)) 

= Dxxu ⊕ g(u), 

where Dxx = ∂xxgH. The α−level set of Au(t) is given by [ )] where 

 

and 

 

We observe that (  and (  are linear and continuous for all α ∈ [0, 1] and u ∈ B, where B ⊂ B(δ, ρ) is a bounded set. Let

 and  be such that  and k k . 

Therefore 

 

Where , and by (G1), we have 

||Au(t)|| ≤ ||Dxxu|| + ||g(u)|| ≤ C0 + C||u|| + M0 

Let M = C0 + M0, then M > 0 and ||Au(t)|| ≤ C||u|| + M. Hence (H1) holds. 

Let C > 0 be the Lipschitz constant of g and B ⊂ X be a bounded set with finite cover  of diameter dj, j = 1, 2..., N. Let d = inf dj, 
then for all u1 and u2 ∈ B, we have 

 

and 
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Since ||Dxxu||≤ C0 for all u ∈ B, we have 

 

where C0 depends on d. Let us choose C0 > 0 such that C0 = ρd. Then 

 

Hence β(A(B)) is well defined and β(A(B)) ≤ Kβ(B), where K = ρ + C > 0. Hence, (H2) holds. 

Using Theorem 3.7 and Lemma 4.7, we have: 

Theorem 4.8.  

Assume (G1), (G2) and (H3) hold, then (16) has at least one solution on I = [0, a0] ⊂ R, a0 > 0. 

Consider now the equations 

and 
∂tgHu = F(t, u, ∂xgHu) (17) 
u(x, 0) = u0(x) ∈ E1 (18) 

Assume that : 

(F1)  F is locally Lipschitz continuous with respect to the second and the third variables. That is, there exists L > 0 such that for all u1, 
u2 ∈ V and V ⊂ E1an open set 

. 

(F1)  There exist C1 > 0, C2 > 0 and M > 0 reals such that 

||F (t, u, ∂xu1)||1 ≤ C1||u||1 + C2||∂xu||1 + M 

Using Theorem 3.7, we have: 

Corollary 4.9.  

Assume (F1), (F2) and (H3) hold, then the initial value problem (17)-(18) has at least one solution on [0, a0] ⊂ R 
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