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ABSTRACT: In this study, we propose the analysis of a tubular structure undergoing expansion along the axis of the cylindrical 

material under internal pressure. Both kinematic and dynamic aspects are examined, leading to the derivation of an exact 
analytical solution using a system of partial differential equations. Simulation results demonstrate that the solution exhibits 
sinusoidal behavior in all cases. Minor variations result in incremental or decremental intervals, while significant changes in 
radius cause simultaneous increase and decrease intervals with trigonometric patterns. Additionally, we observe that the 
second component significantly influences the overall solution behavior compared to the first component. 

KEYWORDS: Kinematics of transformation, gradient tensor, Cauchy-Green tensor, isotropic elementaries invariants, 

incompressible transformation, equations of equilibrium, Bessel differential equations solutions. 

1 INTRODUCTION 

In recent years, researchers seem better equipped to discuss the different methods of finding analytical solutions in 
mathematics, physics or elasticity. This is the case, for example, for irregular problems such as large-scale bodies or areas, 
where analytical solutions are often found. However, these must be considered as approximate since they are valid only «far 
from certain edges» that is to say, the edges where are laid conditions to the overall limits of the solid body considered 
according to the Saint Venant’ principle. Analytical solutions provide a better understanding of the essential characteristics of 
finite transformations. The usual reflexes of superposition of solutions and intuition resulting from linearity or nonlinearity 
must be abandoned in favor of a complete and rigorous approach of analysis of transformation and behavior. In addition, the 
choice of a model of behavior of a real material is not always easy. The behaviour of real materials is often complex. Even for 
structures as common as steel, many aspects of behaviour remain poorly understood and it is even difficult to develop a model 
representing the behaviour of a given material in all circumstances. In each mechanical or physical problem, it is necessary to 
choose the simplest model leading to satisfactory results for the intended use. Nowadays, research may have been inhibited 
by the belief that no progress could be made in the development of theories of nonlinear models unless a completely explicit 
constitutive equation could be written. Such equations were generally chosen on the basis of an alleged simplicity of 
constitutive equations. One of the difficulties of this approach lies in the fact that simplicity is very subjective, depending 
considerably on the choice of variables according to which the relationship is expressed. The transition to the constitutive 
equation, expressed in phenomenological terms, is generally very difficult. It cannot be done without a related model and 
complex mathematical considerations. The most modern approach stems largely from the realization that it is possible to write 
fairly general constitutive equations from phenomenological or geometric considerations. This awareness is already involved 
in the theory of finite elasticity. Here, the constitutive equation is given by a statement that the strain energy function must 
depend on the strain gradient. In this paper, we propose the study of the behavior of a structure in tubular form. It is subjected 
to an expansion following the axis of the material that we assume cylindrical and to an internal pressure. The first part of this 
study concerns the kinematic and dynamic aspects related to the behavior of the model. We will then proceed to an analytical 
solution, exact of the problem at the limits resulting from the setting of equations through a system of partial differential 
equations. We will then simulate the different components of the solution and the solution due to pressure. 
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2 MATHEMATICAL CONSIDERATIONS 

A tube of circular section, of axis �⃗� 𝑧 of inner radius 𝑅𝑖  of outer radius 𝑅𝑜 and of thickness𝐻 =
𝑅𝑜−𝑅𝑖

2
. 

It is subjected to an �⃗� 𝑧 axis expansion and an 𝑃 internal pressure. 

Under the action of these stresses, it is considered that the initial tube is transformed into a circular base cylinder, of axis 
𝑒 𝑧 inner radius𝑟𝑖, outer radius 𝑟𝑜  and thicknessℎ. 

The kinematics of the transformation, kinematically permissible, is defined as: 

𝑟 = 𝛼𝑅, 𝜃 = 𝛽𝛩, 𝑧 = 𝜆𝑍 + 𝑓(𝑅, 𝑡)          (1) 

The 𝐹 gradient of this transformation and the left Cauchy-Green tensor𝐵 = 𝐹𝐹𝑇 take the forms: 
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To obtain a behavior relationship that describes the nonlinear hyperelastic mechanical behavior is to define a behavior 
relationship linking constraints and deformations. To do this, Spencer introduced the second symmetrical Lagrangian tensor of 
Piola-Kirchoff constraints [1]. From the kinematic data associated with the transformation, the Eulerian tensor deformation of 
Cauchy-Green dilations was characterized. The energy potential depends on the deformation invariants:𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3). 

The 𝐼𝑗 , 𝑗 = 1,2,3are the three elementary invariants of tensor 𝐵 defined by: 

{

𝐼1 = 𝑡𝑟𝑎𝑐𝑒(𝐵)

𝐼3 = det(𝐵)

𝐼2 = 𝐼3. 𝑡𝑟𝑎𝑐𝑒(𝐵
−1)

            (3) 

The stress state for an incompressible isotropic hyperelastic behaviour of energy 𝑊 is written: 

𝜎 =
2

𝐽
[𝑊1𝐵 +𝑊2(𝐼1𝐼𝑑 − 𝐵) +𝑊3𝐼1𝐼𝑑]          (4) 

where 𝐼𝑑  is the identity matrix of order 3,𝑊𝑗 =
𝜕𝑊

𝜕𝐼𝑗
, 𝑗 = 1,2,3. 

Considering the equalities (1), (2) and (3), the components of the Cauchy stress tensor, in a system of cylindrical coordinates 
and considering the nature of the kinematics defined in (1) and the components of the Cauchy tensor (4), the equations of 
motion are reduced to the system: 
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The main problem that concerns us when dealing with a differential equation is the search (analytical, numerical or 
approximate) for its solutions. In theory of differential equations as in algebra one can interpret in different ways. In algebra 
we tried to find a general formula, using radicals [2]. There is the possibility of looking for the approximate solution of equations 
with numerical coefficients, as well as that of studying the dependence of solutions on their coefficients. In this paragraph [3], 
we use this last possibility with the method of decoupled equations by posing: 

𝑓(𝑅, 𝑡) = 𝑈(𝑅) + 𝑉(𝑅) cos(𝑤𝑡)          (7) 
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By reporting equation (7) in (6), we obtain Bessel equations (first and second types) 

There are different methods to solve the Bessel differential equation [4], in this article we use the Laplace transformation. 

{
𝑈′′(𝑅) +
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         (8) 

We get analytical solutions in the form of power series. The solutions of these equations are Bessel functions, the 
importance of which we know in mechanics [5,6,7,8]. 

Equation (8.2) is a modified Bessel equation whose solution is a series of functions. We then obtain the analytical solutions 
of (8): 

{
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with 

𝑘2 =
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𝑊1−𝑊2
, 𝜈2 =

𝛼𝛽𝜆𝑤2𝜌0
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,𝐴𝑖, 𝑖 = 0,1,2,3 are intégration constants. 

Thin wall pressure cylinders have wide use in different industrial applications like liquid storage tanks. The knowledge of 
the deformations in the thin walls and the stresses generated is an essential condition for the dimensioning of these structures. 
Before deformation, the initial internal pressure 𝑃0 acts on the surface of the tube wall and the stresses are distributed in a 
non-uniform way over the section. We impose as conditions on the external lateral surface, radial and longitudinal stress [9]. 

{
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3 SIMULATION AND INTERPRETATION 

Here we consider a cylindrical section with small, average and great radius to see the behavior of the solution 𝑓(𝑅, 𝑡). 

3.1 FUNCTION  𝑈(𝑅) 
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Here we can see that the kind of transformation have no influence in the behavior of the solution 𝑈(𝑅), in all the cases this 
component stays in logarithmic increasing. 
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3.2 FUNCTION   𝑉(𝑅) 
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In this component 𝑉(𝑅), we can see that the kind of transformation has a big influence in the behavior of this one. That 
can be explain by when the variation of the radius is so small we stay in an interval of increasing or decreasing depending to 
the values of 𝑅, but when the variation of the radius is so great we stay in an interval of increasing and decreasing at same 
time with a trigonometric behavior depending to the values of 𝑅. 

3.3 FUNCTION  𝑓(𝑅, 𝑡) 
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The simulation of the problem solution 𝑓(𝑅, 𝑡) shows in all the cases that it remains in sunisoidal behavior. As in the 
following case, we can see that the kind of transformation has a big influence in the behavior of this one. That can be explain 
by when the variation of the radius is so small we stay in an interval of increasing or decreasing depending to the values of R, 
but when the variation of the radius is so great we stay in an interval of increasing and decreasing at same time with a 
trigonometric behavior depending to the values of 𝑅. 

As a conclusion, we can say that the second component has a big influence in the behavior of the solution in general 
compared to the first component. 

4 CONCLUSION 

In this paper, we proposed the study of the behavior of a structure in tubular form which is subjected to an expansion 
following the axis of the material that we assumed cylindrical and to an internal pressure. In the first part, kinematic and 
dynamic aspects related to the behavior of the model have been studied. We proceeded to an exact analytical solution of the 
problem at the limits resulting from the setting of equations through a system of partial differential equations has been found. 
Simulation of the different components of the solution and the solution due to pressure shows that: 𝑈(𝑅) stays in all the cases 
this component in logarithmic increasing. 𝑉(𝑅), shows a big influence in the behavior of this one. when the variation of the 
radius is so small we stay in an interval of increasing or decreasing depending to the values of R, but when the variation of the 
radius is so great we stay in an interval of increasing and decreasing at same time with a trigonometric behavior depending to 
the values of R. 𝑓(𝑅, 𝑡) shows in all the cases that it remains in sunisoidal behavior. As in the following case, transformation 
has a big influence in the behavior of this one, when the variation of the radius is so small we stay in an interval of increasing 
or decreasing, but when the variation of the radius is so great we stay in an interval of increasing and decreasing at same time 
with a trigonometric behavior. And the second component has a big influence in the behavior of the solution in general 
compared to the first component. 
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