
International Journal of Innovation and Applied Studies 
ISSN 2028-9324 Vol. 45 No. 2 Apr. 2025, pp. 439-447 
© 2025 Innovative Space of Scientific Research Journals 
http://www.ijias.issr-journals.org/ 

 

Corresponding Author: N’Tcho Assoukpou Jean GNAMELE 439 
 
 
 

MFCC number limit for automatic sound recognition: Application to the chainsaw 
sound identification 

N’Tcho Assoukpou Jean GNAMELE1, Bi Tra Jean Claude YOUAN2, and Konan Fernand GBAMELE3 

1Department of Mathematics-Physics-Chemistry at University Peleforo Gon Coulibaly (UPGC), BP 1328 Korhogo, Côte d’Ivoire 
 

2Technology Laboratory, Félix Houphouët-Boigny University (UFHB), 01 BP V34 Abidjan 01 Cocody, Côte d’Ivoire 
 

3Optical Networks and Telecommunications Laboratory of the Joint Research and Innovation Unit in Engineering Science and 
Technology (UMRI-STI), National Polytechnic Institute Félix Houphouët-Boigny (INPHB), Bp 1093 Yamoussoukro, Côte d’Ivoire 
 
 

 
Copyright © 2025 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 
 

ABSTRACT: This paper investigates the relevance of using a large number of Mel Frequency Cepstral Coefficients (MFCC) as 

descriptors of acoustic signals, and the interaction between these and the nature of the frequency band in which the Mel filters 
are arranged. 
This study forms part of the wider field of automatic recognition of acoustic signals, with a particular focus on those that are 
not speech-related. We evaluated a series of MFCCs, spanning a range from 1 to 50, utilising the central octave band 
frequencies (31.5 Hz-16000 Hz) as the MFCC calculation frequencies. An application was made to the identification of chainsaw 
sounds among a plurality of signals from the forest environment. 
The results revealed a threshold value for the number of MFCCs (LVMFCC) above which classification rates remain constant. 
The LVMFCC=39 was common to all frequencies, although specifically the LVMFCC for each centre frequency was between 5 
and 39 MFCCs. We observed that the notion of an optimal value for the number of MFCCs could appear subjective. The best 
classification rate of 98.41% obtained with the 16000 Hz centre frequency corresponds to a number of MFCCs between 5 and 
50. These results also reveal the need to restructure the. 

KEYWORDS: acoustic, automatic recognition, KNN, MFCC, octave band. 

1 INTRODUCTION 

In the context of automatic recognition of speech and other signals not related to human language, several studies have 
demonstrated that 13 Mel frequency cepstral coefficients are an optimal choice for signal identification [1], [2]. However, 
numerous recent studies employ a comparatively large number of MFCCs in acoustic signal processing. 

The rationale behind the selection of this extensive set of MFCCs remains opaque, with numerous scholars failing to 
elucidate the frequency band utilized in their derivation. 

Indeed, in reference [3], the authors employ a convolutional deep learning model for the classification of respiratory 
diseases based on patients’ respiratory sound signals with MFFCs as descriptors. There are 32 MFFCs in total. In this paper [4], 
the authors present a neural sensor fusion framework for drone detection based on audio and video data. With regard to the 
audio stream, the authors evaluate the Long Term Memory (LSTM) and Convolutional Recurrent Neural Network (CRNN) 
models and demonstrate the superiority of the CRNN model, which is based on Mel Frequency Cepstral Coefficients (MFCC) 
features, of which there are 40. In [5], the authors put forth a multimodal approach to traffic light status detection, employing 
both visual and auditory cues, as seen from the perspective of a quadruped robot traversing an urban setting. A cross-
comparison between N MFCCs (with N ranging from 10, 12, 14, 16, 18, 20, 24 and 28) revealed that 24 MFCCs were optimal. 
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In their work [6], the authors examine the resilience of fully supervised convolutional neural networks (CNNs) and cutting-
edge transfer learning methodologies within the domain of automatic speech recognition. The authors assess the influence of 
the number of Mel Frequency Cepstral Coefficients (MFCCs) on the word error rate (WER) by considering a range of MFCCs, 
from 10 to 24. 

This study [7] presents an optimal method for the classification of cardiac noise based on machine learning technologies, 
with the objective of predicting cardiovascular diseases. In this study, the number of MFCC descriptors employed was 13, 25 
and 42. 

In another study [8], a novel approach to oestrus sound recognition was proposed, utilizing a fusion of two representative 
features as inputs and convolutional neural networks (CNNs) as the training model. The descriptors employed were MFCCs, 
with a total of 30, 40 and 50 coefficients. 

In reference [9], a model of sound quality within high-speed trains (HSTs) is proposed. The model combines MFCC with 
convolutional neural networks (CNN) for the assessment of sound quality in high-speed trains (HSTs). The number of frequency 
cepstral coefficients is 26. 

In [10], the authors assess the efficacy of the convolutional neural network in discerning the diverse spectral attributes of 
acoustic signals, utilizing two widely-used open databases: The Ryerson Audio-Visual Database of Emotional Speech and Song 
(RAVDESS) and the Berlin Database of Emotional Speech (EmoDB) were employed in this study. Five spectral representations 
are extracted from the original audio files, comprising 20 MFCC. 

In the aforementioned literature, the authors do not explicitly indicate the reasons justifying the choice of MFCCs and/or 
do not mention the frequency bands used to obtain these coefficients. However, two key characteristics emerge in the 
calculation of MFCCs: 

The frequency at which the signals are studied, namely the frequency at which Mel’s filter banks are arranged. 

The number of MFCCs. 

In light of this work, two questions arise: 

It would be beneficial to ascertain whether there is a dependency between the number of Mel frequency cepstral 
coefficients and the frequency band of the Mel filter arrangement for a given study. 

Does the number of Mel frequency cepstral coefficients reach a point where it is no longer a determining factor in the 
recognition of study samples? 

In this study, we address these questions by applying the aforementioned methodology to the identification of chainsaw 
samples among a number of environmental signals likely to be perceived in a forest environment. The following section 
presents the methodology employed in this study. 

Section 2 outlines the methodology employed in this study. Section 3 presents the results, while Section 4 offers a discussion 
of these findings. The paper concludes in Section 5. 

2 METHODS 

2.1 MATERIALS 

Given that the object of study is acoustic signals, it is necessary to construct a database that will be employed both for 
training our classifiers and for evaluating their performance. The study is based on two distinct labeling classes. The training 
phase comprises two classes. The chainsaw class comprises the acoustic signals produced by chainsaws, while the forest class 
encompasses all other sounds. The chainsaw class comprises audio recordings of chainsaws made in the Armainvilliers Sunday 
forest (Gretz-Armainvilliers, France) and chainsaw sounds sourced from an online database. The forest class is constituted by 
the sounds of diverse fauna and avifauna, as well as vehicle and meteorological sounds, including the auditory signature of 
precipitation. The sounds were sourced from online databases. 

The test phase comprises chainsaw sounds, recorded at two forestry sites in Côte d’Ivoire: the Yapo-Abbe classified forest 
(Agboville, Côte d’Ivoire) and the National Floristic Centre (Abidjan, Côte d’Ivoire). 

The recordings made at the forestry centers were made using a DR-05 dictaphone with a sampling rate of 44.1 𝑘𝐻𝑧. The 
distance between the transmission source and the dictaphone was between 10 and 100 meters. 
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A total of 1400 sound samples were utilized for the training phase, while 565 sound samples were employed for the test 
phase. All of the sound samples are in the WAV format and are 5 seconds in duration, with a stereo recording. The distribution 
of sound samples by phase and class is presented in Table 1. 

Table 1. Breakdown of sound samples by phase and class 

Training phase Test phase 

Forest class Chainsaw class Chainsaw class 

1043 357 565 

2.2 TASKS AND METHODS 

2.2.1 MEL FREQUENCY CEPSTRAL COEFFICIENTS 

The Mel-frequency cepstral coefficient (MFCC) is a widely utilised feature that has been employed in numerous 
applications, particularly in sound signal processing [11]. The MFCC can be calculated by conducting five consecutive processes. 
These are: signal framing, computing of the power spectrum, application of a Mel filter bank to the obtained power spectra, 
calculation of the logarithm values of all filter banks, and finally, application of the DCT (Discrete Cosine Transform) to Mel’s 
frequency spectrum. 

2.2.2 SIGNAL STRUCTURE FOR MFCC CALCULATION 

The acoustic signal employed to obtain Mel’s frequency cepstral coefficients is the result of merging the two channels of 
the stereo signal obtained after recording. This approach is analogous to that developed in [1]. This method of restructuring 
the study signal will be compared with the case where a single channel is used to obtain the MFCCs. This comparison will enable 
us to assess its impact on the results obtained. 

The resulting signal is as follows: 

𝑠𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡(𝑛) =  [𝐶𝐿1
; 𝐶𝑅1

; 𝐶𝐿2
; 𝐶𝑅2

; … ; 𝐶𝐿𝑚−1
; 𝐶𝑅𝑚−1

; 𝐶𝐿𝑚
; 𝐶𝑅𝑚

]       (1) 

• 𝐶𝐿𝑖
 left channel component 

• 𝐶𝑅𝑖
: left channel component 

• 𝑚: number of samples in the signal frame. 

This restructuring of the acoustic signal is applicable to both the test phase and the training phase samples. 

The resulting signal, designated as 𝑠𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡(𝑛), is then segmented into a one-second signal, as illustrated in Fig. 1, with no 
overlap between the sub-frames 𝑠𝑟𝑒𝑠𝑢𝑡𝑎𝑛𝑡𝑖

(𝑛)). 

 

Fig. 1. Segmentation of the signal resulting from merging the left and right channels 

We compute the MFCCs for each of the 10 "subframes" 𝑠𝑟𝑒𝑠𝑢𝑡𝑎𝑛𝑡𝑖
(𝑛), for which we keep the first N MFCCs. We use the 

10 ×  𝑁 coefficients obtained to construct the descriptor vector of the signal. This vector descriptor is of type 1 ×  10𝑁. 

2.2.3 THE FREQUENCY BAND FOR THE MEL FILTER BANK 

The configuration of the Mel filter banks is based on the center frequencies of the octave bands, which range from 31.5 𝐻𝑧 
to 16 𝑘𝐻𝑧. The Mel filter banks will be evaluated by assessing the center frequencies of each octave band. Octave band analysis 
is a valuable tool in sound measurement as it offers an accurate representation of the human auditory response. This is an 
intriguing aspect as it aligns with the fundamental premise behind MFCC. The selected number of Mel filters is 35 [1]. 
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2.2.4 K- NEIGHBOURHOOD ALGORITHM (KNN) 

K-Nearest Neighbors (KNN) is a relatively straightforward machine learning algorithm that is commonly employed for 
classification purposes [12]. The algorithm is based on the minimum distance between the test point and all training points, 
which may be calculated using a variety of distance metrics, such as the Euclidean distance. Subsequently, the class of the test 
point is determined by the most frequent class of the k nearest neighbors of the test point. The most commonly utilized 
distances include: Consequently, the value of k is of significant importance and should be meticulously planned, as a low k 
value could potentially result in overfitting. The value of k is three (03) [1]. 

3 RESULTS 

3.1 STUDY OF THE INFLUENCE OF THE NUMBER OF THE MFCC ON THE OCTAVE FREQUENCY BAND 

Figs. 1 to 3 illustrate the impact of augmenting the number of Mel’s frequency cepstral coefficients on the classification 
rate for each octave band center frequency. The curves in these figures are organized not on the basis of the central 
frequencies, but rather on the basis of closely related classification rates. 

These figures facilitate an understanding of the MFCC values for which the dependency between the number of MFCCs and 
the classification rate is disrupted. 

 

Fig. 2. Classification rate according to MFCC number for 125 Hz, 500 Hz 

 

Fig. 3. Classification rate according to MFCC number for 63 Hz, 250 Hz, 1000 Hz, and 2000 Hz 
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Fig. 4. Classification rate according to MFCC number for 31.5 Hz, 4000Hz, 8000 Hz, and 16000 Hz 

The evolution of the classification rate as a function of the number of MFCCs can be divided into two phases: a “constant” 
phase and a “quasi-constant” phase. 

The “constant” phase is characterized by a point on the curve at which there is no further change in the value of the 
classification rate from the given value of the number of MFCCs. This value of the MFCCs number is designated the limit value 
of the number of MFCCs (LVMFCC). Table 2 illustrates the LVMFCC for each octave band center frequency. 

Table 2. “constant” phase 

octave band 
centre frequency 

(Hz) 
31.5 63 125 250 500 1000 2 000 4 000 8 000 16 000 

range of cepstral 
coefficient 

number 
≥ 37 ≥ 36 ≥ 27 ≥ 39 ≥ 27 ≥ 39 ≥ 39 ≥ 37 ≥ 14 ≥ 5 

LVMFCC 
classification 

rate(%) 
74.69 52.92 2.3 22.65 1.77 24.78 36.81 57.52 88.85 98.41 

The classification rates presented in Table 2 do not necessarily correspond to the highest classification rates for the specified 
frequency bands. 

The “quasi-constant” phase results in the appearance of the LVMFCC, which is then followed by a variation in the 
classification rate up to the constant phase. In the quasi-constancy phase, multiple LVMFCC values may be observed. The 
selected value is that for which the rate of change is less than 1%. This variation in the rate is attributable to a small number 
of values for the number of cepstral coefficients, which exhibit a change in the classification rate. Table 3 illustrates the values 
for each central frequency, as well as the discrepancies between the peak of this fluctuation and the minimum value. 

The values of the intervals vary according to the center frequency under consideration, encompassing a range of 11 to 40 
Mel frequency cepstral coefficients. 

It would appear that, contingent on the nature of the frequency band (see Table 2), there is a clearly defined LVMFCC for 
each octave band center frequency. 

For a number of coefficients equal to or greater than, the classification rates are contingent upon the nature of the 
frequency band in which the Mel frequency cepstral coefficients are obtained: it is found to remain constant. We observe that 
the classification rates are not identical for all study frequencies. Indeed, the highest classification rate of is achieved for the 
central frequency of. 
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Table 3. Fluctuation in the classification rate: “quasi-constant” phase 

octave band 
centre frequency 
(Hz) 

31.5 63 125 250 500 1000 2000 4000 8000 16000 

range of cepstral 
coefficient number 

≥ 26 ≥ 18 ≥ 19 ≥ 20 ≥ 24 ≥ 33 ≥ 15 ≥ 22 ≥ 12 ≥ 5 

fluctuation in 
classification rates 
(%) 

0.89 0.88 0.18 0.89 0.18 0.18 0.53 0.18 0.18 0 

3.2 THE ADVANTAGES OF SIGNAL RESTRUCTURING: THE COMBINATION OF THE LEFT AND RIGHT AUDIO CHANNELS 

The results displayed in Fig. 2 to 4 were derived by integrating Channels 1 and 2, as illustrated in (1). This approach has an 
impact on the quality of the information extracted from the signal under study, which in turn affects the Mel frequency cepstral 
coefficients obtained. Fig. 6 illustrates the classification rates obtained and the LVMFCC when the channels are not merged, 
but a single channel is utilised for the calculation of the MFCCs. 

 

Fig. 5. Classification rate according to MFCC number for 31.5 Hz, 8000 Hz, and 16000 Hz single channel 

The signal then assumes the following form: 

𝑠𝑜𝑛𝑒−𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑛) =  [𝐶𝐿1
; 𝐶𝐿2

; … ; 𝐶𝐿𝑚−1
; 𝐶𝐿𝑚

]         (2) 

The signal, 𝑠𝑜𝑛𝑒−𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑛) is then divided into a one-second signal, as demonstrated in Fig. 6, with no overlap between 
the 𝑠𝑜𝑛𝑒−𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖

 subframes. 

The MFCCs are computed for each of the 5 "subframes" 𝑠𝑜𝑛𝑒−𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖
, with the first N MFCCs retained for each. 

The 5 ×  𝑁 coefficients are then employed in the construction of the signal descriptor vector. This vector descriptor is of 
type 1 ×5N. In this phase, only the frequencies illustrated in Fig. 3 are considered, given their high classification rate. 

 

Fig. 6. Segmentation of one channel 
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We observe a change in the LVMFCC. The classification rate for the central frequency of 31.5 𝐻𝑧 exhibits a notable increase, 
reaching values of ((14.16% at the maximum) and (14.16% at LVMFCC)), in comparison with the classification rates observed 
for the other two frequencies. 

The classification rates for 8000 𝐻𝑧 and 16000 𝐻𝑧 exhibit a notable decline and Are respectively (30.27% (maximum value) 
and 30.97% (upper LVMFCC)) and (11.51% (maximum value) and 11.51% (upper LVMFCC)). 

Additionally, an increase in the LVMFCC is observed for 8000 𝐻𝑧 and 16000 𝐻𝑧, while this value decrease for 31.5 𝐻𝑧. 
Table 4 presents a comparison of the LVMFCC values obtained through the application of Eqn. (1) and Eqn. (2). 

Table 4. comparative analysis of the values for channel fudging and for a single channel 

octave band 
centre 

frequency 
(Hz) 

Merging of channels 1 & 2 One channel 

LVMFCC 
classification 

rate (%) 

The maximum 
classification 

rate (%) 
LVMFCC 

LVMFCC 
classification rate 

(%) 

The maximum 
classification 

rate (%) 
LVMFCC 

31.5 74.69 75.93 37 88.85 90.09 35 

8000 88.85 89.03 14 57.88 58.76 34 

16000 98.41 98.41 5 86.9 86.9 10 

The LVMFCC is applicable at frequencies of 16000 𝐻𝑧 and 8000 𝐻𝑧, with the former being approximately twice as high as 
the latter. It is therefore evident that the structure of the processed signal represents a significant factor in the calculation of 
relevant characteristics for MFCCs. 

4 DISCUSSION 

It is important to indicate the specific frequency band employed to obtain the MFCCs, as illustrated in Figs. 1 to 3, during 
the calculation process. This value has a substantial impact on the quality of information extracted from the signal and, 
consequently, on the precision and reliability of the obtained results. However, the articles [1-9] do not address this factor. 
Information is provided regarding the potential filters for noise reduction [13], [14], the frequency band containing the signal 
information [15], and the sampling rate [13], [16], [17]. While this information is undoubtedly valuable, it does not provide a 
definitive indication of the precise frequency at which Mel’s filter banks should be positioned. Nevertheless, the optimal value 
for the number of Mel frequency cepstral coefficients can be determined based on the specific characteristics of the frequency 
band in question. 

The objective of the descriptor-classifier combination in the context of pattern recognition is twofold: firstly, to optimize 
the expected results and secondly, to reduce the information processing time. 

The results demonstrate that there is a threshold beyond which the number of MFCCs is no longer indicative of relevant 
information. This results in more complex calculations, which consequently reduces the time taken to process the information. 

Discussing the optimal number of MFCCs for achieving favorable outcomes becomes inherently subjective when we extend 
beyond the VLMFCC. This aspect does not provide sufficient justification for the selection of the number of MFCCs, particularly 
in light of the findings presented by the aforementioned authors. The number of MFCCs is a value intrinsic to the choice of 
study frequency and to signal processing linked to the structure of the signal (fusion of data, one channel, etc.). Therefore, a 
generalization of its value will not be appropriate without well-defined information. 

We note that the concept of an optimal value for the number of MFCCs [5], may appear to be overly subjective in certain 
configurations. With regard to the center frequency of 16 𝑘𝐻𝑧, the highest classification rate (98.41%) is observed for a 
number of MFCCs between 5 and 50. The number of MFCCs equal to 5 is not the optimum value, but rather a value that 
optimises the classification rate. This is particularly evident when considering that all the MFCC values greater than 5 give the 
same optimum classification rate. This observation was made for the 31.5 𝐻𝑧 frequency, where the number of coefficients 15 
and 19 yielded the same value of 75.93%. The same is true for the 500 Hz frequency, where the maximum classification rate 
of 5.13% corresponds to the number of MFCCs 1 and 2. 
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5 CONCLUSION 

The selection of the number of Mel cepstral coefficients appears to be a parameter contingent upon the specific frequency 
band that has been selected. The values of the classification rates are inherently contingent upon these variables and 
necessitate the communication of their intrinsic nature. In the field of automatic sound recognition, particularly in the context 
of chainsaw signals, there exists a value for the number of Mel Cepstral Coefficients (MFCCs) that exceeds a threshold beyond 
which the interaction between the number of MFCCs and the nature of the frequency band is no longer linear (LVMFCC). A 
study of octave band center frequencies (31.5 𝐻𝑧 − 16 𝑘𝐻𝑧) has revealed limit values for the number of MFCCs in the range 
[5 − 50]. However, for an LVMFCC of 39, the classification rate remains constant for all frequencies studied. Thus, determining 
the limit value for a given study frequency avoids selecting an excessively large value for the number of MFCCs, which would 
have no impact on classification. The sole consequence of this large number is that the calculation will become more complex, 
necessitating a greater number of iterations to run the identification algorithms. 

The structure of the signal is contingent upon the nature of the frequency band and the selection of the number of Mel-
frequency cepstral coefficients (MFCCs). To illustrate, the restructuring of an audio signal by combining the left and right 
channels into a single signal has been demonstrated to markedly enhance the classification rate in comparison to the utilization 
of a single channel of the audio acquisition for information extraction. 

In consideration of these factors, the center frequency of 16 𝑘𝐻𝑧 yields the optimal classification rate of 98.41% for a 
number of MFCCs of 5. Notably, this rate is consistent across all values of the number of MFCCs exceeding or equal to 5 for the 
same octave band centre frequency. 
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