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ABSTRACT: Early detection of type 2 diabetes is a public health priority due to its high prevalence and the severe complications 

that may result. However, traditional machine learning approaches face several limitations, particularly in model optimization, 
handling class imbalance, and ensuring clinical interpretability. 
In this context, we propose an optimized machine learning approach that combines advanced preprocessing, optimization, and 
modeling techniques. Our methodology is based on four key components: (i) feature engineering guided by medical knowledge 
(e.g., Glucose/BMI, Age×BMI), (ii) adaptive class rebalancing using SMOTEENN, (iii) Bayesian hyperparameter optimization with 
Optuna for XGBoost and MLP (Multilayer Perceptron) models, and (iv) an ensemble stacking strategy integrating Random 
Forest, XGBoost, and MLP, with logistic regression as the meta-learner. 
The PIMA Indians and Frankfurt Hospital datasets were used to validate this approach. The results are remarkable: an accuracy 
of 94.05% on PIMA, 99.27% on Frankfurt, and 99.71% on the merged data, with an AUC reaching 99.99%. 
SHAP analysis highlights the increased importance of insulin in PIMA and the Age×BMI interaction in Frankfurt, while confirming 
the stability of universal markers such as glucose and BMI. 
This approach not only delivers outstanding predictive performance but also provides differentiated interpretability, paving 
the way for more personalized and equitable predictive medicine. 

KEYWORDS: Machine Learning, Diabetes, Stacking Ensemble, Bayesian Optimization, Feature Engineering, SHAP, Medical 

Prediction. 

1 INTRODUCTION 

Type 2 diabetes has become a major global public health issue. In 2021, this disease affected 537 million people, a figure 
projected to rise to 783 million by 2045 [1]. It is responsible for 6.7 million annual deaths and generates healthcare costs 
exceeding USD 966 billion. Its insidious progression leads to delayed diagnosis in 44 % of cases, exposing patients to severe 
complications, including cardiovascular, renal, and ophthalmological disorders. In this context, early detection is a crucial 
priority to reduce morbidity and mortality and to effectively guide prevention policies. 

Machine Learning methods are emerging as promising tools to predict diabetes risk from clinical data. However, their 
integration into clinical practice remains limited by several methodological barriers: class imbalance, low interpretability, 
algorithmic complexity, and lack of generalizability across populations. This study aims to propose an integrated, rigorous, and 
explainable approach to address these challenges. 

The PIMA Indians dataset, although modest in size, is a benchmark reference for evaluating classification algorithms. 
Several approaches have been tested: Maniruzzaman et al. proposed a majority voting method achieving 84.2 % accuracy; Patil 
et al. experimented with a naïve stacking approach, reaching 76.3 % accuracy [2], [3]; Islam et al. demonstrated the benefit of 
feature engineering, achieving 88.7 % [4]. More recently, Oliullah et al. achieved 91.5 % accuracy and an AUC-ROC of 97 % 
using an advanced stacking architecture integrating seven classifiers and SHAP for interpretability [5]. 
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Hybrid methods have also been proposed. Abdollahi et al. [6] integrated stacking and genetic algorithms within an IoT 
environment, achieving 99 % accuracy but without cross-validation. Reza et al. [7] emphasized the importance of adapting 
models to local contexts. Talari et al. [8] developed an ultra-fast bagging-based method, reaching 99.07 % accuracy in just 0.1 
ms. 

The Frankfurt Hospital dataset, which is richer, has enabled the exploration of more complex architectures. Ihnaini et al. 
[9] combined IoMT and electronic medical records, achieving 99.6 % accuracy. Hasan et al. [10] developed DNet, a hybrid model 
combining CNN, LSTM, AdaBoost, and XGBoost, obtaining 99.79 % accuracy and an AUC of 99.98 %. However, the 
computational complexity of these models hinders their clinical deployment. 

Some teams have proposed lighter alternatives: Elhoseny et al. [11] used soft voting with SVM, RF, and KNN (AUC = 0.979). 
Aouamria et al. [12] fused LSTM, CNN, and DNN, reaching 99.81 %. Rashed et al. [13] tested a stacking approach with real 
hospital data. Han et al. [14] introduced Glu-Ensemble, integrating a temporal dimension into glucose prediction. 

Despite these advances, methodological limitations remain: frequent lack of external validation, poor reproducibility, over-
optimization on single datasets, and excessive complexity. 

In response, our study proposes a four-pillar approach: 

Clinical feature engineering – generating variables such as Age × BMI or Glucose/BMI; 

Rebalancing with SMOTEENN, combining oversampling and removal of ambiguous cases; 

Bayesian optimization with Optuna, reducing computational cost; 

Explainable stacking architecture, combining Random Forest, XGBoost, and MLP, aggregated through logistic regression. 

Interpretability is ensured through SHAP, and multi-cohort cross-validation is conducted on PIMA and Frankfurt datasets. 
The performances obtained (94.05 % on PIMA, 99.27 % on Frankfurt) surpass recent studies, establishing a robust, 
generalizable, and explainable architecture, suitable for clinical practice requirements. 

2 MATERIALS AND METHODS 

2.1 DATA AND VALIDATION STRATEGY 

The study is based on three complementary clinical datasets: 

PIMA Indians (n = 768), composed exclusively of Native American women with a strong genetic predisposition to diabetes and 
a prevalence of 34.9%. 

Frankfurt Hospital (n = 2000), a European cohort from the Frankfurt University Hospital Diabetes Registry, with a prevalence 
of 41.2%. 

PIMA + Frankfurt Fusion (n = 2768), enabling increased statistical power (prevalence: 39.5%) and promoting inter-population 
evaluation. Each dataset contains eight biomedical variables: number of pregnancies, plasma glucose concentration, blood 
pressure, skinfold thickness, insulin, body mass index (BMI), diabetes pedigree function, and age, along with a binary target 
variable indicating the presence or absence of diabetes. 

2.2 QUALITY AUDIT AND MISSING VALUE MANAGEMENT 

Exploratory analysis reveals similar missing value rates between PIMA and Frankfurt, particularly for: 

Insulin: ~48% missing, reflecting clinical measurement constraints. 

SkinThickness: ~29% missing, related to high inter-operator variability. 
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Table 1. Rate of Zero Values (values = 0) by Variable in the PIMA and Frankfurt Datasets 

Variable PIMA (% of zero) Frankfurt (% of zero) 

Glucose 0,65% 0,65% 

BloodPressure 4,56% 4,50% 

SkinThickness 29,56% 28,65% 

Insulin 48,7% 47,8% 

BMI 1,43% 1,4% 

The homogeneity of missing value patterns allows for the application of a single imputation strategy: KNN (k = 5). The 
optimization of k through cross-validation minimized the bias-variance trade-off. 

2.3 VALIDATION PROTOCOL AND DATA SPLITTING 

Three complementary levels of validation were implemented to assess the robustness and generalizability of the proposed 
model: 

Intra-dataset validation: performed separately on the PIMA and Frankfurt datasets to measure the model’s performance 
within each population independently. 

Inter-dataset validation: the model is trained on one dataset (e.g., PIMA) and tested on the other (e.g., Frankfurt) to evaluate 
its ability to generalize across genetically and clinically distinct populations. 

Validation on merged data: the two datasets are combined into a single set (n = 2768), allowing evaluation on a larger and 
more heterogeneous cohort representative of a mixed population. 

In each scenario, the data are split using a stratified 70/30 ratio, ensuring balanced class distribution. Then, a 5-fold cross-
validation (5-fold CV) is applied to further strengthen result robustness. 

2.4 PREPROCESSING AND FEATURE ENGINEERING 

KNN Imputation (k = 5) 

Missing values were imputed using KNN (k = 5), chosen for its ability to preserve inter-variable relationships while reducing 
bias. Cross-validation was used to optimize k, ensuring an optimal bias-variance trade-off. 

Medically-Guided Feature Engineering 

Composite variables were created to enhance the clinical relevance of the model: Age × BMI, Glucose / BMI, Glucose × DPF, 
Insulin / Glucose, and Pregnancies2. These transformations reflect recognized pathophysiological interactions, such as the 
combined effect of aging and obesity or the impact of insulin resistance. 

Class Rebalancing (SMOTEENN) 

The class imbalance in the datasets (PIMA: 500/268; Frankfurt: 1177/823; Fusion: 1677/1091) was corrected using 
SMOTEENN, which combines: 

SMOTE (k = 5): generation of synthetic samples 

ENN (k = 3): removal of ambiguous points near class boundaries. 

Normalization and Standardization 

A MinMaxScaler was applied to scale variables into the [0,1] range, improving convergence for models sensitive to feature 
scaling, such as MLP. 

2.5 MODELING 

Models Used for Diabetes Prediction 

In this study, three high-performing machine learning algorithms were selected for their methodological complementarity 
and proven effectiveness in the field of medical prediction. 
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The first, XGBoost (Extreme Gradient Boosting), is a gradient boosting method that successively improves the performance 
of weak learners by correcting their residual errors. It stands out for its high accuracy, robustness against noisy or imbalanced 
data, and its ability to avoid overfitting thanks to built-in regularization techniques [14]. 

The second algorithm is Random Forest (RF), an ensemble method based on the bagging principle. It trains numerous 
independent decision trees on bootstrap samples and then aggregates their predictions. Appreciated for its stability, ability to 
model non-linear relationships, and strong performance on medical data, it is a judicious choice in clinical contexts [13]. 

Finally, the third model is the Multilayer Perceptron (MLP), a multi-layer artificial neural network. Although more 
demanding in terms of parameter tuning and data volume, the MLP is particularly effective in learning complex representations 
and modeling non-linear relationships, making it relevant for detecting chronic diseases such as diabetes [12]. 

Optimized Tri-Ensemble Architecture via Stacking 

To overcome the limitations of classical voting techniques (hard or soft voting), this study proposes an advanced ensemble 
architecture based on two-level hierarchical stacking. This approach aims to leverage the structural complementarity of 
heterogeneous models while maximizing robustness, accuracy, and the generalization capacity of the predictive system. 

At level 1, three specialized classifiers are used as base models: Random Forest, XGBoost, and MLP. Each is trained 
independently using five-fold stratified cross-validation, ensuring no information leakage by employing out-of-fold predictions. 
Random Forest contributes robustness and noise tolerance, XGBoost improves performance through precise sequential 
learning of residual errors, and MLP captures complex non-linear interactions between clinical variables. 

At level 2, the predictions from the three base models are used as inputs to a logistic regression meta-model, which learns 
to dynamically weight the outputs of the models according to patient characteristics. This meta-learner combines the individual 
strengths of each model while minimizing their specific errors, thus enabling a more refined and reliable final decision (see 
Figure 1), as demonstrated in the recent work of Rashed et al [13]. 

Algorithmic Methodology 

The complete prediction pipeline developed in this study is structured into five main phases. 

The first phase concerns data preprocessing. It includes cleaning clinical variables, particularly replacing outlier values in 
Insulin and SkinThickness with missing values. Biomedical feature engineering is then performed, generating six new clinically 
relevant synthetic variables, such as the Glucose/BMI ratio or the Age × BMI interaction. Missing values are imputed using the 
KNN Imputer algorithm (k = 5), which preserves multivariate 

relationships between variables. To address class imbalance, resampling is performed using the SMOTEENN method. 
Finally, all variables are normalized using the MinMaxScaler method, ensuring a uniform scaling of features. 

The second phase involves hyperparameter optimization. A Bayesian search is carried out using the Optuna tool, with 30 
iterations for XGBoost and 20 for MLP, to identify the most effective parameter combinations. 

The third phase corresponds to the construction of the ensemble architecture. The three base models (RF, XGB, MLP) are 
integrated into a stacking architecture with logistic regression as the meta-learner, forming a hierarchical tri-ensemble 
architecture. 

The fourth phase concerns model training and validation. A stratified five-fold cross-validation is applied to the entire 
pipeline, ensuring both the reproducibility of results and the prevention of overfitting through the use of out-of-fold 
predictions. 

Finally, the fifth phase focuses on model explainability and interpretability, which are crucial in a medical context. The SHAP 
(SHapley Additive exPlanations) algorithm is used to quantify and visualize the impact of each variable on the final prediction, 
enhancing the model’s transparency and facilitating its acceptance by healthcare professionals. (See Algorithm 1). 

Mathematical Formalism of Stacking [16] 

Formally, let three base models be denoted as h1, h2, and h3, corresponding respectively to Random Forest, XGBoost, and 
MLP. Each model predicts a probability pi (x) that an individual xbelongs to the diabetic class: 

p1 (x) =P (y=1∣x, RF), 

p2 (x) =P (y=1∣x, XGB), 
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p3 (x) =P (y=1∣x, MLP) 

The meta-model H (x), based on logistic regression, learns a weighted combination function of these probabilities: 

H (x) =σ (w1⋅p1 (x) +w2⋅p2 (x) +w3⋅p3 (x) +b) 

where: 

σ sigma denotes the sigmoid function, 

wi are the weights associated with each model, 

b is a bias term, 

and H (x) represents the final estimated probability that x has diabetes. 

This formulation enables a flexible and adaptive aggregation of predictions, optimizing the overall performance of the 
predictive system. 

Algorithm of the Proposed Approach 

The algorithm is based on a Bayesian-optimized stacking ensemble architecture, combining advanced preprocessing, 
SMOTE-ENN balancing, KNN imputation, and SHAP analysis for diabetes prediction that is both high-performing and 
interpretable. 

ALGORITHM 1: DIABETES_PREDICTION_STACKINGENSEMBLE 

INPUT: dataset 

OUTPUT: optimized_stacking_model, performance_metrics, SHAP_explanations 

BEGIN 

PHASE 1: DATA PREPARATION 

df ← LOAD_DATA (dataset_path) 

df ← HANDLE_MISSING_VALUES (df) 

df ← FEATURE_ENGINEERING (df) 

PHASE 2: PREPROCESSING 

X, y ← SPLIT_FEATURES_TARGET (df) 

X ← KNN_IMPUTATION (X, k = 5) 

X_balanced, y_balanced ← SMOTEENN_BALANCING (X, y) 

X_train, X_test, y_train, y_test ← TRAIN_TEST_SPLIT (X_balanced, y_balanced, ratio = 0.7) 

X_train, X_test ← MINMAX_NORMALIZATION (X_train, X_test) 

PHASE 3: HYPERPARAMETER OPTIMIZATION 

Params_xgb ← BAYESIAN_OPTIMIZATION_XGBOOST (X_train, y_train, trials = 30) 

Params_mlp ← BAYESIAN_OPTIMIZATION_MLP (X_train, y_train, trials = 20) 

PHASE 4: ENSEMBLE CONSTRUCTION 

stacking_model ← TRAIN_STACKING (X_train, y_train, params_xgb, params_mlp) 

PHASE 5: EVALUATION 

metrics ← FULL_EVALUATION (stacking_model, X_test, y_test) 

explanations ← SHAP_ANALYSIS (stacking_model, X_train) 

RETURN stacking_model, metrics, explanations 

END 
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Fig. 1. Flowchart of the Proposed Method 

2.6 OPTIMIZATION AND INTERPRETABILITY 

Bayesian Hyperparameter Optimization 

To improve model performance while reducing computational cost, Bayesian optimization was performed using the Optuna 
library, renowned for its efficiency in complex and multidimensional search spaces. The underlying algorithm relies on the 
Tree-structured Parzen Estimator (TPE) strategy, which enables intelligent exploration of the hyperparameter space. 

The optimized parameters vary according to the models considered: 

• XGBoost: n_estimators, max_depth, learning_rate, subsample, colsample_bytree 

• Random Forest: n_estimators, max_depth, min_samples_split, max_features 

• MLP: hidden_layer_sizes (number of neurons), activation, alpha, batch_size, learning_rate_init 

Model Interpretability with SHAP [15] 

Prediction interpretability was ensured using the SHAP (SHapley Additive exPlanations) method, which quantifies the 
individual contribution of each variable to the prediction. 

Three levels of analysis were performed: 

• Global analysis: calculation of the average feature importance across the entire dataset. The most influential variables were 
glucose, BMI, age, as well as the derived features Age × BMI and Glucose/BMI. 

• Local analysis: individualized visualization of each variable’s contribution to the prediction for a given patient. This approach 
allows for explaining each model decision in light of the patient’s specific biometric profile. 
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• Population-differentiated analysis: comparison of SHAP values between the PIMA and Frankfurt datasets, revealing 
structural disparities. For example, the Diabetes Pedigree Function (DPF) was found to be more determinant among PIMA 
female patients, whereas BMI was more discriminative in the Frankfurt cohort. These findings highlight the necessity of 
adapting interpretation to the epidemiological specificities of each population. 

The SHAP approach enhances the transparency and clinical acceptability of the prediction system by providing an 
understandable and traceable explanation for each algorithmic decision. 

3 RESULTATS 

3.1 BAYESIAN HYPERPARAMETER OPTIMIZATION 

The optimal configurations identified varied according to the dataset: 

• PIMA Indians (n = 768): 

o XGBoost: n_estimators = 251, max_depth = 5, learning_rate = 0.288, subsample = 0.658, colsample_bytree = 0.657 
o MLP: n_neurons = 119, learning_rate = 0.00120, batch_size = 16, epochs = 129 

• Frankfurt Hospital (n = 2000): 

o XGBoost: n_estimators = 100, max_depth = 5, learning_rate = 0.193, subsample = 0.866, colsample_bytree = 0.606 
o MLP: n_neurons = 110, learning_rate = 0.00081, batch_size = 16, epochs = 102, dropout = 0.206 

• PIMA + Frankfurt Fusion (n = 2768): 

o XGBoost: n_estimators = 105, max_depth = 8, learning_rate = 0.238, subsample = 0.604, colsample_bytree = 0.863 
o MLP: n_neurons = 42, learning_rate = 0.00083, batch_size = 16, epochs = 97, dropout = 0.361 

These results reveal a notable variation in optimal architectures depending on the size and heterogeneity of the datasets, 
confirming the importance of dataset-specific optimization for each application context. 

3.2 DETAILED PERFORMANCE BY DATASET 

Table 2. Performance of the Stacking Model (RF + XGBoost + MLP) on the PIMA, Frankfurt, and Combined Datasets 

Dataset Accuracy Precision Recall F1-Score AUC-ROC 

PIMA 94.05% 93.21% 94.87% 94.03% 99.01 

Frankfurt 99.27% 99.15% 99.38% 99.26% 99.92% 

Frankfurt + PIMA 99.71% 99.63% 99.81% 99.72% 99.99% 

Table 1 highlights the high performance of the stacking model, particularly on the Frankfurt dataset (accuracy: 99.27%, 
AUC: 99.92%), suggesting a favorable data structure and well-differentiated profiles. In comparison, the results on PIMA 
(accuracy: 94.05%) reveal greater complexity associated with borderline cases. The fusion of the two datasets achieves optimal 
performance (accuracy: 99.71%, AUC: 99.99%), demonstrating a synergistic complementarity that enhances the model’s 
generalization capability. 
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3.3 ABLATION STUDY ON FRANKFURT 

Table 3. Results of the Ablation Study on the Frankfurt Dataset – Impact of Removing Pipeline Components 

Removed Component Accuracy Precision Recall F1-Score AUC Impact 

Baseline (complete) 98.68% 98.67% 98.94% 98.80% 99.89% - 

Class balancing 93.83% 92.00% 89.76% 90.86% 97.51% -4.85% 

Feature Engineering 97.76% 97.12% 98.93% 98.02% 99.18% -0.92% 

BMI × DPF 97.37% 97.35% 97.87% 97.61% 99.65% -1.31% 

Age × BMI 97.94% 97.89% 98.41% 98.15% 99.45% -0.74% 

Glucose/BMI 97.94% 97.88% 98.40% 98.14% 99.80% -0.74% 

Insulin/Glucose 98.53% 98.41% 98.94% 98.67% 99.89% -0.15% 

Glucose × DPF 98.52% 99.18% 98.10% 98.63% 99.95% -0.16% 

Pregnancies 98.66% 97.87% 99.73% 98.79% 99.88% -0.02% 

Imputation 98.14% 99.00% 97.55% 98.27% 99.94% -0.54% 

Normalization 98.68% 98.67% 98.94% 98.80% 99.89% 0.00% 

Table 3 reveals that class balancing is the most critical component of the pipeline, with a 4.85% accuracy drop when 
removed. Derived variables such as BMI × DPF (–1.31%) and overall feature engineering (–0.92%) also play a key role. Other 
elements, such as Age × BMI or Glucose/BMI interactions, have a moderate impact (~–0.74%). In contrast, certain variables 
such as Pregnancies2 or normalization have no significant effect, highlighting the robustness of the model and helping identify 
priority components for optimization. 

3.4 COMPARATIVE SHAP ANALYSIS (PIMA VS. FRANKFURT) 

The SHAP analysis presented in Figures 2 (Frankfurt), 3 (PIMA), and 4 (Fusion) highlights marked differences in feature 
importance across datasets. In all cases, Glucose emerges as the most predictive variable, with a consistently high effect. 

• Figure 2 (Frankfurt): Glucose, BMI, and the Age × BMI interaction dominate, reflecting a homogeneous cohort with well-
separated metabolic profiles. 

• Figure 3 (PIMA): In addition to Glucose, Insulin, BMI, and variables such as SkinThickness and DPF gain importance, reflecting 
the epidemiological complexity of this population. DPF (Diabetes Pedigree Function) quantifies genetic predisposition to 
diabetes but remains moderately contributive as it is less directly linked to clinical measurements. 

• Figure 4 (Fusion): Combining the datasets allows the model to capture richer interactions, particularly Glucose × DPF and 
Age × BMI, while reducing the impact of unstable variables such as DPF or Pregnancies. 

These results show that: Certain variables (e.g., Glucose) are robust across contexts; Others (Insulin, BMI) are sensitive to 
epidemiological differences; Dataset fusion improves the model’s generalization and stability. 
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Fig. 2. SHAP Scatter Plot (Frankfurt Dataset) – Feature Importance in Diabetes Prediction 

 

Fig. 3. SHAP Scatter Plot (PIMA Dataset) – Feature Importance in Diabetes Prediction 
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Fig. 4. SHAP Scatter Plot (PIMA + Frankfurt Dataset) – Feature Importance in Diabetes Prediction 

4 DISCUSSION 

A detailed analysis of the results highlights the methodological robustness of the proposed approach, structured around 
four key pillars: context-specific model optimization, cohort-specific performance differences, the superiority of stacking, and 
robustness demonstrated through an ablation study. Together, these dimensions converge toward a compelling demonstration 
of the scientific validity and clinical generalization potential of the developed pipeline. 

4.1 CONTEXTUAL BAYESIAN OPTIMIZATION: FINE-TUNING TO DATASET CHARACTERISTICS 

The integration of Bayesian optimization proved to be a strategic lever for precisely adjusting the hyperparameters of the 
XGBoost and MLP models, taking into account the epidemiological specificities of each dataset. 

For the PIMA Indians dataset, characterized by high structural complexity (subtle non-linear relationships, a high proportion 
of borderline cases), optimal models were deeper and more sophisticated: XGBoost required 251 trees, and the MLP needed 
129 epochs to converge effectively. 

In contrast, for the Frankfurt Hospital dataset, the models converged with lighter architectures (XGBoost at 100 trees, MLP 
at 102 epochs), reflecting a more homogeneous distribution and better-defined clinical signals. For the combined dataset, the 
optimal architectures were intermediate but reinforced (e.g., max_depth = 8 for XGBoost), reflecting the increased richness of 
variable interactions arising from complementary cohorts. 

This context-specific optimization leverages the inherent structure of the data, thereby maximizing each model’s 
performance while ensuring fine adaptation to underlying clinical realities. 

4.2 CONTRASTED PERFORMANCE ACROSS COHORTS: EPIDEMIOLOGICAL DIVERSITY AND PREDICTIVE RICHNESS 

The comparative evaluation of performance reveals marked variability across the studied cohorts. On the Frankfurt dataset, 
the model achieved an accuracy of 99.27% and an AUC-ROC of 99.92%, indicating excellent discriminative capacity, likely 
facilitated by case homogeneity and well-defined clinical profiles. 

Conversely, performance on the PIMA dataset was slightly more modest (accuracy = 94.05%), consistent with the well-
documented complexity of this dataset (fuzzy class distribution, ethnic diversity, socio-medical factors). 
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Merging the two cohorts proved particularly fruitful, yielding an accuracy of 99.71% and an AUC-ROC of 99.99%. This result 
demonstrates a synergistic effect stemming from enriched variable interactions and broader coverage of clinical cases. 

The diversification of patient profiles thus enhances the robustness of the model, improving its generalizability to 
heterogeneous real-world contexts. 

4.3 SUPERIORITY OF STACKING: INTELLIGENT INTEGRATION OF HETEROGENEOUS MODELS 

The comparative analysis between individual models and the stacking approach clearly highlights the superiority of the 
ensemble method. For example, on the Frankfurt dataset, stacking achieved an accuracy of 99.27%, representing an absolute 
gain of +2.55% over the best individual model (XGBoost at 96.72%). 

This substantial improvement is explained by the algorithmic complementarity of the classifiers used (Random Forest, 
XGBoost, MLP). Stacking leverages each model’s strengths—tree-based robustness, sequential precision, and neural capacity 
to capture non-linearities—to produce a more reliable final decision, particularly in ambiguous or borderline cases. 

In a sensitive domain such as healthcare, this adaptive integration strategy provides a decision-making framework that is 
reliable, stable, and compliant with clinical requirements for accuracy, interpretability, and safety. 

4.4 COMPARATIVE SHAP ANALYSIS: INTER-COHORT VARIABILITY AND MODEL INTERPRETABILITY 

The PIMA dataset, despite being enriched with relevant clinical variables, presents a complex structure marked by class 
imbalance, missing values, and a high proportion of borderline cases—necessitating advanced preprocessing, including 
SMOTEENN and robust feature engineering. The SHAP analysis reveals that predictions rely primarily on a narrow set of 
dominant variables such as Glucose, Insulin, and BMI, while other features contribute marginally. 

In contrast, the Frankfurt dataset is distinguished by population homogeneity and clear clinical signals, enabling excellent 
discriminative ability (AUC = 99.92%) through efficient exploitation of biomedical interactions. 

The fusion of the two datasets enhances clinical representativeness, yields a notable improvement in performance 
(accuracy = 99.71%, AUC = 99.99%), and strengthens inter-cohort generalization. This fused model retains high interpretability, 
with a SHAP hierarchy that is coherent and well-aligned with biomedical knowledge. 

5 COMPARISON WITH THE STATE OF THE ART 

To rigorously position our approach within the current scientific ecosystem, we conducted a two-stage comparative analysis 
focused on ensemble models applied to the Frankfurt Hospital Germany Diabetes Dataset (FHGDD). 

Our stacking architecture—combining Random Forest, XGBoost, and MLP, orchestrated by a logistic regression meta-
learner—achieves an accuracy of 99.27% and an AUC-ROC of 99.92%, while standing out through high interpretability via SHAP 
and rigorous inter-dataset validation. This configuration positions our model at the intersection of statistical robustness and 
clinical transparency. 

A first group of studies proposed relevant approaches but reported results inferior to those of our pipeline. Among them, 
Rashed et al. [13] developed a stacking model based on RF and SVM, with a Gradient Boosting Classifier (GBC) as the meta-
model. While their system achieved an accuracy of 99.13% and an F1-score of 99.25%, it offered no formal explanation of its 
decisions (absence of SHAP or LIME), representing a major barrier to its application in personalized medicine. A variant of their 
model achieved 99.10% accuracy but with interpretability rated as low to moderate. 

Similarly, Ihnaini et al. [17] proposed a deep learning approach with IoMT data fusion, reaching an accuracy close to 99%. 
However, the study reported no cross-validation, and the absence of model explainability limits its applicability in critical 
diagnostic contexts. 

In a more traditional vein, Boughareb et al. [18] combined standard ensemble methods (Voting, Bagging, XGBoost), 
obtaining an accuracy of 92.7% and an F1-score of 88.7%. While technically sound, their approach suffered from limited 
discriminative capacity, weak validation protocols, and no integration of interpretability mechanisms, making it less 
competitive compared to our solution. 

These approaches, despite methodological diversity, share a certain deficit in experimental rigor or transparency. By 
contrast, they underscore the relevance and superiority of our model in scenarios that demand both strong predictive 
performance and clinical accountability. 
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On the other hand, some recent studies have reported raw results slightly exceeding ours, but at the cost of decision 
traceability. For example, Aouamria [12] proposed a hybrid architecture integrating CNN, LSTM, AdaBoost, and XGBoost 
(DNet), achieving an impressive accuracy of 99.79% and an AUC-ROC of 99.98%. However, this performance comes with a 
complete lack of explanatory analysis, and the absence of validation on other cohorts raises doubts about the model’s 
generalizability. 

Similarly, Kumar et al. [19] implemented a CNN model optimized via the Cheetah Strategy COA algorithm, reaching 99.72% 
accuracy. Nonetheless, their approach is entirely deep learning–based, without integration of interpretability tools, and 
without evidence of inter-cohort robustness, limiting its clinical transferability. 

While these approaches achieve extremely high numerical accuracy, they raise the crucial question of balancing raw 
performance and interpretability—a central challenge for AI systems intended for precision medicine. 

In light of this twofold comparison, our model emerges as a balanced solution, combining high-level predictive performance 
with rigorous, biomedically relevant explainability. The joint use of SMOTEENN, Bayesian optimization, inter-cohort 
validation, and SHAP-based interpretation endows our pipeline with the operational robustness and scientific transparency 
essential for safe clinical deployment. It thus stands as a stable methodological benchmark, capable of competing with the 
most advanced systems while meeting the requirements of traceability, reproduciblity, and medical decision support. 

Table 4. Performance Comparison of Ensemble Methods for Diabetes Prediction on the Frankfurt Dataset and Related Variants 

Étude Méthode Dataset(s) Accuracy 

NOTRE METHODE Stacking (RF+XGB+MLP) Frankfurt 99.27 

[12] CNN+LSTM+AdaBoost+XGBoost Frankfurt 99.79% 

[19] CNN + COA Frankfurt 99.72% 

[19] CNN + COA PIMA 99.90% 

[13] RF+SVM+GBC Stacking Frankfurt 99.13% 

[17] Deep Ensemble Frankfurt 99.00% 

[17] Fusion multisource Frankfurt + Multi 99.60% 

[18] Ensemble voting/stitching Frankfurt 92.70% 

6 CONCLUSION 

This study proposes a methodology for type 2 diabetes prediction based on an ensemble stacking architecture combining 
three complementary models: Random Forest, XGBoost, and Multi-Layer Perceptron. Optimized through context-specific 
Bayesian search via Optuna, the approach is strengthened by robust preprocessing (KNN imputation, MinMax normalization), 
adaptive class rebalancing with SMOTEENN, and clinically guided biomedical feature engineering (e.g., Age × BMI, 
Glucose/BMI). Model interpretability is ensured through an in-depth SHAP-based analysis, guaranteeing decision transparency 
in line with the requirements of the medical domain. 

The achieved performances are: 94.05% on the PIMA Indians dataset, 99.27% on the Frankfurt Hospital dataset, and 99.71% 
on the combined cohort. The corresponding AUC-ROC scores reach 99.01%, 99.92%, and 99.99%, respectively, confirming the 
robustness of the model across diverse epidemiological contexts. Compared to competing approaches in the literature, the 
proposed architecture stands out not only for its high level of accuracy but also for its inter-cohort generalizability and its 
ability to explain individual predictions. 

Despite these encouraging results, several limitations must be acknowledged. First, the model has not yet been 
prospectively validated in a real-world clinical environment, which remains a constraint. Integrating longitudinal data (e.g., 
time series of blood glucose or glycated hemoglobin) could broaden the scope toward dynamic risk prediction. Furthermore, 
enriching the model with multimodal data (genomic, behavioral, socio-economic) could enhance the clinical relevance of the 
system within the framework of personalized medicine. 
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