

Innovation and Technology Management in Power Systems Organizations

Jean-Michel Mufuta Mukena

Innovation and Technology Consultant, Engineering Specialist (former Saudi Aramco), Brussels, Belgium

Copyright © 2026 ISSR Journals. This is an open access article distributed under the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: Power systems are undergoing rapid transformation driven by decarbonization, digitalization, decentralization, and rising electricity demand. Innovation and technology management (ITM) is essential for utilities to adopt emerging technologies, integrate renewable energy, and maintain grid reliability. Key innovation areas include renewable and hybrid generation, advanced transmission systems, smart distribution networks, energy storage, and digital solutions such as AI, IoT, and digital twins. Utilities use frameworks like the Technology Life Cycle, Open Innovation, and Dynamic Capabilities to guide technology adoption. However, regulatory constraints, legacy infrastructure, cost barriers, and skill gaps continue to limit progress. Looking ahead, autonomous grid operations, digital substations, hydrogen integration, and grid-forming inverters will define the next stage of the energy transition.

KEYWORDS: technology, Innovation, power systems, management.

1 INTRODUCTION

Innovation and technology management (ITM) has become essential for power systems organizations in response to rapid technological advances, environmental pressures, and rising electricity demand. Power systems—including generation, transmission, distribution, and end-use—are experiencing a major transformation driven by renewable energy integration, digitalization, decentralization, and decarbonization. Effective ITM enables utilities to identify emerging technologies, enhance operational efficiencies, and improve system reliability while advancing sustainability goals. Recent studies highlight the importance of strategic, organizational, and technological innovation in shifting conventional, centralized utilities toward smart, flexible, and consumer-centric systems [1].

Fig. 1. Innovation and Technology

2 STRATEGIC IMPORTANCE

The modern power sector is shaped by global megatrends that fundamentally alter the design and operation of electricity systems:

- Decarbonization, supported by renewable integration and emissions regulations.
- Digitalization through IoT, AI, and data analytics.
- Decentralization driven by distributed energy resources such as rooftop PV, batteries, and microgrids.
- Electrification arising from the growth of EVs, heat pumps, and industrial electrification.
- Resilience needs due to extreme weather events and growing cyber-threat exposure.

Innovation management ensures that organizations can proactively and cost-effectively address these shifts while maintaining high reliability standards.

3 THEORETICAL FOUNDATIONS OF INNOVATION MANAGEMENT

The theoretical foundations of innovation management provide a framework for understanding how organizations adopt, develop, and scale new technologies.

3.1 TECHNOLOGY LIFE CYCLE (TLC)

The TLC framework guides organizations through phases of research, development, deployment, and commercialization. Utilities apply TLC to evaluate renewable energy systems, storage technologies, and grid automation solutions [2].

3.2 OPEN INNOVATION

The open innovation model encourages collaboration between utilities, startups, universities, and R&D laboratories to accelerate technology development and adoption. Evidence from utilities worldwide shows that open innovation enhances technological competitiveness and promotes faster integration of digital and renewable solutions [3].

3.3 DYNAMIC CAPABILITIES THEORY

Dynamic capabilities refer to a firm's ability to sense new opportunities, seize them, and reconfigure internal processes to adapt to change [4]. In the power sector, dynamic capabilities support digital transformation, DER integration, and system flexibility enhancement.

3.4 TECHNOLOGY READINESS LEVELS (TRLs)

TRLs are used to assess the maturity of technologies such as smart meters, grid-forming inverters, digital substations, and hydrogen-based systems [5]. Technology Readiness Levels (TRLs) are commonly expressed on a standardized scale ranging from 1 to 9, representing the maturity of a technology from fundamental research through development and final deployment.

Fig. 2. Technology Readiness Levels (TRLs)

4 KEY AREAS OF TECHNOLOGY INNOVATION

The areas of technology innovation presented below are derived from both practical exposure and a comprehensive survey of relevant literature.

4.1 GENERATION TECHNOLOGIES

Advances in power generation include the integration of solar, wind, hydro, and geothermal technologies, supported by hybrid renewable-energy plants that combine intermittent resources with energy storage [4]. Additional innovations include hydrogen-ready turbines and carbon capture and storage (CCS) systems for deep decarbonization [7].

4.2 TRANSMISSION INNOVATIONS

Modern transmission systems require enhanced control, stability, and long-distance power transfer capabilities. Innovations such as high-voltage DC (HVDC) transmission, flexible AC transmission systems (FACTS), wide-area monitoring systems using phasor measurement units (PMUs), and dynamic line rating technologies enable secure and efficient grid operations [8].

4.3 DISTRIBUTION SYSTEM TECHNOLOGIES

Distribution networks are becoming more intelligent through the adoption of Advanced Distribution Management Systems (ADMS), smart meters, AMI, distribution automation, and DERMS. These technologies support bi-directional energy flows and allow utilities to better manage rooftop solar, battery systems, and microgrids [9].

4.4 ENERGY STORAGE & FLEXIBILITY

Energy storage technologies—including lithium-ion batteries, flow batteries, pumped-hydro storage, and thermal storage—enable higher penetration of renewables and provide system flexibility [4]. Demand Response (DR) mechanisms and Virtual Power Plants (VPPs) further enhance flexibility and load balancing [10].

4.5 DIGITAL TECHNOLOGIES

Digital technologies support forecasting, optimization, and real-time control of power systems. AI and machine learning improve load forecasting, predictive maintenance, and distributed generation management [1]. IoT sensors enhance asset condition monitoring, while digital twins provide simulation and optimization capabilities. Blockchain-based platforms are emerging for peer-to-peer energy trading [12]. Cybersecurity systems protect critical digital infrastructure [13].

5 PROCESSES FOR MANAGING INNOVATION

The processes for managing innovation outline how organizations identify, evaluate, test, and deploy emerging technologies effectively.

5.1 TECHNOLOGY SCOUTING

Utilities increasingly monitor global technology trends, collaborate with innovation hubs, and form partnerships with startups and universities to identify emerging opportunities. Technology scouting is fundamentally driven by the strategic and operational challenges faced by the organization, ensuring that the technologies identified directly address those needs.

5.2 PORTFOLIO MANAGEMENT

Innovation portfolios must balance low-risk operational improvements with long-term disruptive technologies. Tools such as TRLs, cost-benefit analyses, and structured risk assessments support prioritization [8].

5.3 R&D AND COLLABORATION

Collaboration through joint ventures, public–private partnerships, and participation in international research bodies (such as IEEE PES and CIGRÉ) enhances access to technology expertise and promotes innovation diffusion.

5.4 PILOT TESTING & PROTOTYPING

Scouted technologies are required to undergo rigorous testing to ensure their full functionality and compatibility with the organization's environmental and operational conditions. Regulatory sandboxes, demonstration projects, and digital twin environments enable utilities to test new technologies in controlled settings [5].

5.5 SCALING AND ADOPTION

Successful scaling requires organizational change management, workforce training in digital and renewable-energy technologies, and standardized procurement frameworks to ensure interoperability.

6 ORGANIZATIONAL STRUCTURES FOR INNOVATION MANAGEMENT

Common organizational structures supporting innovation include:

- Chief Technology Officer (CTO) or innovation offices
- Digital transformation teams
- In-house R&D laboratories
- Cross-functional innovation squads
- Startup accelerators and innovation ecosystems
- Technology governance committees for cyber and interoperability management

These structures help embed innovation into organizational culture and decision-making processes.

7 BARRIERS TO INNOVATION IN POWER SYSTEMS

Barriers limiting innovation include:

- High capital requirements for pilot and demonstration projects
- Regulatory complexity and slow policy adaptation
- Risk aversion due to reliability requirements
- Legacy grid infrastructure limiting flexibility
- Data silos and interoperability issues
- Lack of digital skills within the workforce [1]

8 KEY PERFORMANCE INDICATORS (KPIs)

KPIs commonly used to evaluate innovation performance include:

- System reliability measures (SAIDI, SAIFI)
- Renewable energy penetration levels
- Cost savings from digital and operational improvements
- Reduction in technical and non-technical losses
- Innovation project success and implementation rates
- R&D expenditure vs. productivity improvements
- Workforce innovation participation rates

9 EMERGING TRENDS AND RESEARCH DIRECTIONS

Emerging innovations shaping future power systems include:

- AI-driven autonomous grid operation [15]
- Fully digital substations based on IEC 61850
- Ultra-high-voltage DC (UHVDC) continental supergrids
- Vehicle-to-grid (V2G) integration for mobility-based flexibility
- Grid-forming inverters enabling 100% renewable power systems [16]
- Edge computing for decentralized control [15]
- Hydrogen-based flexibility and power-to-X systems [7]

These technologies point toward highly distributed, digital, and decarbonized future energy systems.

10 CONCLUSION

Innovation and technology management is crucial for modernizing power systems and achieving the dual objectives of sustainability and reliability. Although significant technological advancements have been made—such as AI-enhanced grid operations, renewable integration, and digital substations—organizational and regulatory challenges persist. Future research and practice should focus on holistic frameworks that integrate technology readiness, dynamic organizational capabilities, regulatory reforms, and market mechanisms to accelerate effective innovation across the energy sector.

ACKNOWLEDGMENT

Over the past eight years, my work in managing innovation and technology for a power systems organization in Saudi Arabia has provided extensive exposure to emerging solutions and global technology providers. This experience has enabled me to observe how cutting-edge innovations are integrated into real-world power systems and how organizational and technological capabilities evolve in practice.

REFERENCES

- [1] Kumar, S., Singh, A., & Jain, M. (2022). Innovation strategies for smart and sustainable power systems. *Energy Policy*, 165, 112937.
- [2] Chiaroni, D., Chiesa, V., Franzò, S., & Frattini, F. (2010). Unintended consequences of moving to open innovation in the electricity industry. *R&D Management*, 40 (4), 414–430.
- [3] Chesbrough, H. W. (2003). *Open Innovation: The New Imperative for Creating and Profiting from Technology*. Harvard Business School Press. /Liyanage, S., et al. (2020). Open innovation in the energy sector: Opportunities for utilities and technology developers. *Renewable and Sustainable Energy Reviews*.
- [4] Teece, D. J. (2007). Explicating dynamic capabilities for sustainable enterprise performance. *Strategic Management Journal*, 28 (13), 1319–1350.
- [5] OECD/IEA. (2020). *Innovation in Energy Systems: Insights for the Clean Energy Transition*.
- [6] Gallo, A. B., Simões, M. G., Costa, H. K. M., & Santos, W. C. (2016). Energy storage in the energy transition. *Renewable and Sustainable Energy Reviews*, 65, 800–822.
- [7] Hydrogen Council. (2021). *Hydrogen Insights: A perspective on hydrogen's role in future energy systems*.
- [8] Van Hertem, D., & Ghandhari, M. (2010). Multi-terminal VSC HVDC transmission for the European supergrid: Obstacles. *Renewable and Sustainable Energy Reviews*.
- [9] Akhavan-Hejazi, H., & Mohsenian-Rad, H. (2018). Power systems big data analytics: Survey of applications and methodologies. *IEEE Transactions on Power Systems*.
- [10] Hledik, R., & Faruqui, A. (2020). Demand response and system flexibility: Analysis and emerging trends. The Brattle Group.
- [11] Ahlström, H., & O'Neill, R. (2021). Digitalization of the electric power industry: A review. *Electric Power Systems Research*, 190, 106896.
- [12] Mollah, M. B., et al. (2021). Blockchain technologies for smart grid and energy trading applications. *IEEE Access*.
- [13] Zografopoulos, I., et al. (2020). Cybersecurity challenges in modern power systems. *IEEE Transactions on Smart Grid*.
- [14] International Renewable Energy Agency (IRENA). (2021). *Innovation Landscape for a Renewable-Powered Future*.
- [15] Zhang, X., et al. (2020). AI-driven grid operation and the role of edge computing. *Electric Power Systems Research*.
- [16] Green, T., & Navarro-Espinosa, A. (2022). Grid-forming inverters for future renewable-dominated power systems. *IEEE Power & Energy Magazine*.