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ABSTRACT: In this article, we propose a new one-dimensional discrete chaotic map, obtained by combining a polynomial logistic 

map and a sinusoidal map. Dynamic analysis of the proposed map shows that it has better chaotic properties, good ergodicity 
over a wide range of parameters, and a relatively large key space. Compared to classical logistic and sinusoidal maps, the 
proposed map exhibits improved ergodicity, with state variables uniformly distributed in the interval [0,1], confirming the 
dynamic superiority of the proposed map and its suitability for cryptographic and pseudo-random generation applications. 
Based on these properties, we propose a new image encryption algorithm using sequences from the new chaotic map. The 
scheme is based on a permutation phase and two a diffusion phase driven by the chaotic sequences generated by the new 
discrete map. The performance of the proposed system is evaluated through sensitivity tests to initial conditions and keys, key 
space analysis, and differential attacks. In addition, security indicators such as information entropy, NPCR, UACI, correlation 
coefficients, and execution time are calculated to validate the effectiveness and robustness of the encryption algorithm. 

KEYWORDS: one-dimensional chaotic map, polynomial–sinusoidal, chaotic system, chaos theory, chaotic map. 

1 INTRODUCTION 

Since its emergence, chaos theory has established itself as a promising area of re-search in many scientific fields [1–3]. In 
cryptography, chaotic systems are of particular interest due to their intrinsic properties, such as ergodicity, unpredictability, 
and high sensitivity to initial conditions and control parameters, which can be used to enhance the security and confidentiality 
of information protection algorithms [4–6]. Discrete chaotic systems are widely used for multimedia data encryption because 
they are easily implementable in digital environments [7]. Numerous studies have sought to improve the performance of 
security algorithms, reduce execution time, and increase resistance to cryptanalysis [8], relying mainly on chaotic maps or 
fractional order maps to improve confusion and 

diffusion mechanisms [9]. In recent decades, the use of chaos in image encryption has become widespread [10–13]. Several 
effective schemes have been pro-posed, including algorithms based on fractional chaotic systems [14], pixel confusion and 
diffusion [15], and one-dimensional polynomial chaotic maps of the PWQPCM type in-corporating segmentation, substitution, 
and combined diffusion [16]. In [17], the authors introduced an image encryption scheme based on a logistic map whose 
parameters de-pend on the values of the pixels in the plaintext image, allowing image-specific pseudo-random sequences to 
be generated while maintaining low computational complexity. Similarly, Wen et al. showed that the integration of hybrid 
chaotic maps significantly improves cryptographic qualities in terms of entropy, NPCR, and UACI [18]. 
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However, despite the many advantages of nonlinear dynamical systems, discrete logistic recurrence maps have certain 
disadvantages, such as restricted chaotic regions, the presence of periodic windows, and low sensitivity to parameters and 
initial conditions, which can render them ineffective for cryptographic applications [19-20].In order to overcome these 
constraints, several new discrete chaotic maps with improved performance have been developed. For example, Yicong Zhou 
et al. [21] proposed a one-dimensional discrete chaotic system obtained by the parallel combination of two maps, offering 
good distribution uniformity and high sensitivity to initial conditions, without periodic windows on the interval [0,4]. Xie et al. 
[22] introduced an improved variant of the logistic map that resolves several classic limitations, although the chaotic range 
remains limited. Similarly, Zhongyun Hua et al. [23] proposed chaotic maps based on the cosine transform (Cosine-Transform-
Based Chaotic Systems, CTBCS), characterized by complex dynamics and the absence of periodic windows. Zhang et al. [24] 
recently presented an encryption scheme based on new chaotic maps and a compression technique offering good performance 
and computational efficiency. 

Motivated by research aimed at improving the dynamic qualities of logistic maps, we introduce in this article a new one-
dimensional discrete chaotic map, called the polynomial–sinusoidal map. The polynomial-sinusoidal map combines a 
polynomial logistic map and a sinusoidal term, controlled by several independent parameters, allowing the chaotic range to be 
widened and unwanted periodic windows to be eliminated. It is then used to design a high-performance and secure image 
encryption system. Section 2 describes the classic chaotic map. Section 3 presents the mathematical definition of the 
polynomial-sinusoidal map and the analysis of its chaotic properties. Section 4 describes the proposed image encryption 
system. Finally, the last section concludes the article. 

2 PRELIMINARY 

2.1 POLYNOMIAL LOGISTIC MAP 

The polynomial logistic map is a nonlinear dynamic system developed from the fundamental characteristics of the classical 
logistic map [25]. Mathematically, it is defined by the following expression: 

𝑥_(𝑛 + 1) = 𝑟/4 𝑥_𝑛 (1 −
1

2
𝑥𝑛 − 𝛽𝑥𝑛

2)          (1) 

where r ∈ [0, 13] and β ∈ [0.5, 1] are the control parameters, while x_n ∈ [0, 1] represents the value of the chaotic sequence 
at iteration n. Fig. 1a and 1b show the bifurcation diagram and the Lyapunov exponent of the polynomial logistic map, 
respectively. As shown in this figure, the map exhibits chaotic behaviour interspersed with periodic windows in the interval r 
∈ [10.5, 12.5]. This chaotic zone remains relatively narrow and limited. Furthermore, the system depends on only two control 
parameters, which reduces the overall dynamic complexity of the model. These drawbacks are an obstacle to its use in 
cryptography, where a wide chaotic parameter range and high complexity are required to guarantee a satisfactory level of 
security. 

 

Fig. 1. Bifurcation diagram (a) and Lyapunov exponent (b) of polynomial logistic map 
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2.2 SINE MAP 

The sine map is a non-linear, one-dimensional iterative map defined by the recurrence relation (2) [26]. It is presented as a 
representative example of the complexity of chaotic dynamical systems. 

𝑥𝑛+1 = 𝜆𝑥𝑛 sin(𝜋𝑥𝑛)            (2) 

In this equation, λ ∈ [0,1] is a control parameter, while xn ∈ [0,1] represents the state variable of iteration n. The different 
dynamic behaviors of the sine map are illustrated by the bifurcation diagram and the Lyapunov exponent plotted in Fig. 2a and 
b, respectively. As indicated, the sinusoidal map exhibits similar behaviors and comparable limits to those of the classical 
logistic map. 

 

Fig. 2. Bifurcation diagram (a) and Lyapunov exponent (b) of sine map 

3 NEW CHAOTIC 1D MAP 

In this section, a new one-dimensional (1D) chaotic map, referred to as the polynomial–sinusoidal map, is proposed. This 
map is obtained by combining the polynomial logistic map and the sinusoidal map presented in the previous section. The 
proposed map involves a larger number of control parameters compared to the two reference maps, which enhances its 
dynamic complexity. The resulting nonlinear dynamical system is defined by the equation given in relation (3). 

𝑥_(𝑛 + 1) = (𝑟/4 𝑥_𝑛 (1 −
1

2
𝑥𝑛 − 𝛽𝑥𝑛

2) +𝜆𝑥𝑛 sin(𝜋𝑥𝑛)) mod1       (3) 

where r∈ [0, +∞ [, β∈ [0.5,1] and λ∈ [0, +∞ [are the control parameters, x_n denotes the initial condition, and mod 1 
represents the modulo operator that ensures the output of the proposed map remains within the interval [0,1]. The proposed 
map exhibits chaotic behaviour over a wide range of the parameters λ and β. To further characterize and analyze these 
nonlinear dynamics, the map is investigated using the principal techniques commonly employed for chaos characterization in 
dynamical systems. 

3.1 COBWEB DIAGRAM ANALYSIS 

Cobweb diagrams are graphical methods for analysing the iterative behaviour of one-dimensional discrete dynamical 
systems [27]. They allow the visualization of the iterative trajectories of a nonlinear mapping starting from a given initial 
condition. 

Fig. 3a and 3b show the cobweb diagrams of the proposed map and the polynomial logistic map, respectively. It can be 
observed that the proposed discrete map generates a set of non-repeating and highly irregular iterative trajectories, which 
demonstrates its chaotic nature. Moreover, the trajectories of the proposed map fill the entire rectangular output space, unlike 
those of the polynomial logistic map. This result indicates that the proposed map exhibits stronger chaotic behaviour than the 
conventional polynomial logistic map. 



Ahmat Mahamat Saleh, Kalsouabé Zoukalne, Mahamat Charfadine Nimane, and Amir Moungache 

 
 
 

ISSN : 2028-9324 Vol. 48 No. 1, Mar. 2026 181 
 
 
 

 

Fig. 3. Cobweb diagrams of the proposed map (a) and the polynomial logistic map (b) 

3.2 BIFURCATION ANALYSIS 

Figure 4 shows the bifurcation diagram of the new map as a function of the control parameters 𝑟 and λ. For r=0.5 (Fig. 4 
(a)), the proposed system exhibits periodic behaviour for low values of λ. As λ increases, a sequence of successive bifurcations 
appears, indicating a transition toward more complex dynamical regimes, characterized by the emergence of chaos 
interspersed with periodic windows. In contrast, for λ=0.5 (Fig.4 (c)), the system displays chaotic behaviour for low values of r, 
and then evolves toward a periodic regime, eventually converging to a steady state when r exceeds the interval [0.8,1]. When 
the control parameters increase significantly (Fig. 4 (b) and 4 (d)), the discrete map enters a chaotic regime over the entire 
parameter space considered. This regime is characterized by non-periodic trajectories and a dense occupation of the interval 
[0,1], with only a few isolated periodic windows. Furthermore, compared with the bifurcation diagrams of the polynomial 
logistic map (Fig. 1 (a)) and the sinusoidal map (Fig. 2 (a)), the bifurcation structure of the proposed map shows an enlarged 
chaotic region, a noticeable reduction in periodic windows, and a high degree of uniformity in the distribution of state variables. 
These results confirm a significant improvement in dynamic complexity, enhanced ergodicity, and robust pseudo-random 
behaviour, highlighting the suitability of the proposed system for pseudo-random sequence generation and encryption 
applications. 
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Fig. 4. Bifurcation diagrams of the proposed map as functions of the control parameters r and λ for the cases: (a) r=0.5, (b) r=5, (c) 
λ=0.5, and (d) λ=5 

3.3 ANALYSIS OF THE LYAPUNOV EXPONENT 

The Lyapunov exponent is a very important tool in chaos analysis. A positive value of the Lyapunov exponent indicates a 
large divergence of neighbouring trajectories and thus reflects a strong dependence on initial conditions [28]. The evolution of 
the Lyapunov exponent of the new map as a function of the control parameters 𝜆 and r is shown in Fig. 5. The results presented 
show that the new nonlinear map has strong chaotic dynamics over the entire range of control parameters, as indicated by the 
largely positive Lyapunov exponents. In contrast, for low parameter values, the Lyapunov exponent is negative or close to zero, 
which corresponds to the presence of periodic states, as noted in the bifurcation diagram. The presence of a few very small 
periodic windows provides information on the quality and dynamic complexity of the proposed chaotic map on the one hand, 
and on the high sensitivity to initial conditions and parameters on the other. 
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Fig. 5. Lyapunov exponent of the proposed map as a function of the control parameters r and λ in the cases: (a) r=0.5, (b) r=5, (c) 
λ=0.5, and (d) λ=5 

3.4 ANALYSIS OF SENSITIVITY TO INITIAL CONDITIONS AND PARAMETERS 

Sensitivity to initial conditions and control parameters is one of the fundamental properties of chaotic behaviour [29]. To 
analyze this property, time series of the proposed map are plotted by introducing a small perturbation of 10-16 to the initial 
conditions and control parameters, as shown in Fig. 6. As can be observed, infinitesimal variations of the order of 10-16 lead to 
a rapid divergence of the generated sequences, which clearly confirms the strong sensitivity of the system to both initial 
conditions and parameters. In addition, the high sensitivity of the control parameter λ contributes to enlarging the overall key 
space. These characteristics endow the pro-posed system with high robustness and strong resistance to cryptanalysis, making 
it particularly suitable for secure encryption applications. 
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Fig. 6. (a) Sensitivity analysis with respect to initial conditions; (b) sensitivity of the proposed map to the parameter r; and (c) 
sensitivity of the proposed map to the parameter λ 

3.5 APPROXIMATE ENTROPY ANALYSIS 

Approximate entropy measures the complexity and randomness of a time series. It is equal to zero for a periodic series and 
strictly positive for a chaotic series, increasing with the degree of unpredictability of the sequence [30]. Fig. 7 shows that the 
proposed map exhibits high and stable approximate entropy values over a wide range of control parameters, indicating strong 
complexity and enhanced randomness of the generated sequences. In contrast, the polynomial logistic map exhibits significant 
decreases in approximate entropy, revealing the presence of periodic regimes. These results confirm the superiority of the 
proposed map for cryptographic applications. 

 

Fig. 7. Approximate Entropy Analysis 
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4 APPLICATION TO IMAGE CRYPTOGRAPHY 

4.1 ENCRYPTION SCHEME 

In this section, we propose a new image encryption algorithm based on the use of a new chaotic map, a permutation, and 
two diffusion processes. The synoptic diagram of the proposed image encryption algorithm is shown in Fig.8. In the 
permutation phase, the original image is decomposed to obtain column vectors. Next, the chaotic sequences S1 generated by 
the new map are used to determine the permutation indices of the pixels. Finally, to eliminate correlations between adjacent 
pixels, recurrent operations are performed to mix the positions of the pixels in the original image. 

 

Fig. 8. Schéma synoptique de l’algorithme de cryptage d’image proposé 

The diffusion is carried out in two phases. In the first phase, the chaotic sequences S2 generated with Keys 2 are used to 
encrypt the pixels. Pixel encryption is achieved by performing an XOR operation between the result of the permutation phase 
and the sequences S2. In the second phase, another diffusion is performed using the chaotic sequences S3. This consists of 
reinforcing the first diffusion by applying a new XOR operation between the pixels encrypted in the first diffusion and the 
elements of S3. Cascading the diffusion operations significantly reinforces the robustness of the algorithm in both directions. 
Details of the process are given in the pseudo-code below. 

 

Algorithm  Encryption algorithm 

Input: Original image, I x1, 𝛽1, 𝑟1,𝜆1, 𝑥2,𝛽2 , 𝑟2,𝜆2, 𝑥3, 𝛽3, 𝑟3, 𝜆3 

Output: Encrypted image C 

1: for i = 1 : M × N do  

2:               
𝑆1(𝑖) = 𝑚𝑜𝑑(

𝑟1

4
(𝑥1(𝑖 − 1) (1 −

1

2
𝑥1(𝑖 − 1) − 𝛽1𝑥1(𝑖 − 1)2)

+ 𝜆1𝑥1(𝑖 − 1) sin(𝜋𝑥1(𝑖 − 1)) , 1)                                                                                                                                

3: end for  

4: img1 ← reshape(I, 1, M × N) 

5: for i = M × N down to 2 do  

6:              J ← mod(floor(S1(i)·i), i) + 1 

7:              temp ← img1(i) 

8:  img1(i) ← img1(j) 
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9:              img1(j) ← temp 

10: end for  

11: for i = 1 : M × N do  

12:  
𝑆2(𝑖) = 𝑚𝑜𝑑(

𝑟2

4
(𝑥2(𝑖 − 1) (1 −

1

2
𝑥2(𝑖 − 1) − 𝛽2𝑥2(𝑖 − 1)2)

+ 𝜆2𝑥2(𝑖 − 1) sin(𝜋𝑥2(𝑖 − 1)) , 1)                                                                          

13: end for 

14: img2(1) ← img1(1) ⊕ floor(S2(1) × 256) 

15: for i = 2 : M × N do 

16:  img2(i) ← img1(i) ⊕ img2(i−1) ⊕ floor(S2(i) × 256) 

17: end for 

18: for i = 1 : M × N do 

19:  
𝑆3(𝑖) = 𝑚𝑜𝑑(

𝑟3

4
(𝑥3(𝑖 − 1) (1 −

1

2
𝑥3(𝑖 − 1) − 𝛽3𝑥3(𝑖 − 1)2)

+ 𝜆3𝑥3(𝑖 − 1) sin(𝜋𝑥3(𝑖 − 1)) , 1)                                                                        

20: end for       

21: for i = M × N − 1 downto 1 do 

22:  img3(i) ← img2(i) ⊕ img2(i+1) ⊕ floor(S3(i) × 256) 

23: end for 

24: C ← reshape(img3, M, N) 

Le décryptage de l’image est l’opération inverse du cryptage. La figure 2.7 présente les principales phases du processus de 
décryptage. 

 

Fig. 9. Schéma synoptique du processus de décryptage d’image 

4.2 EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION 

The results presented in this subsection were obtained using simulations performed in MATLAB R2016b, installed on a 
MacBook Air (13-inch, 2017) equipped with a 2.2 GHz dual-core Intel Core i7 processor and 8 GB of 1600 MHz DDR3 RAM. The 
cryptosystem was tested on two images of size 256×256, namely Lena and Cameraman. Figure 10 illustrates the results of the 
image encryption and decryption processes. The encrypted images are visually very different from the original images, while 
the decryption process accurately restores the original images. 
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Fig. 10. Results of encryption and decryption processes 

4.2.1 HISTOGRAM EVALUATION 

The histogram of an image illustrates the spectral distribution of its intensity levels. To ensure the confidentiality of 
information, the histogram of the encrypted image must exhibit a uniform distribution, which masks repetitions present in the 
unencrypted image and improves the system’s resistance to statistical attacks [31]. Fig. 11 shows the histograms of the original 
and encrypted images. In both cases, it is clear that the grey-level distribution of the encrypted images is homogeneous, 
whereas that of the original images is non-uniform. The histogram analysis therefore leads to the conclusion that the proposed 
algorithm is effective against statistical attacks. 

 

Fig. 11. Histogram analysis of clear and encrypted images 
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4.2.2 CORRELATION EVALUATION 

In a plain image, adjacent grey levels exhibit strong correlations in the horizontal, vertical, and diagonal directions. To 
ensure good resistance to statistical attacks, an effective cryptosystem must significantly reduce these correlations in the 
encrypted image. To this end, the correlations between adjacent pixels in the plaintext and ciphertext Lena images are analyzed 
in all three directions, and the results are presented in Fig.12. As can be observed, the distributions of adjacent grey levels in 
the plaintext image are highly concentrated, reflecting a high degree of correlation. In contrast, the corresponding distributions 
in the encrypted image are widely dispersed, indicating that the encryption process effectively eliminates pixel correlations 
and produces a low-correlation encrypted image. 

 

Fig. 12. Correlation graphs for the clear image and for encrypted image 
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In addition to the information provided by the correlation graphs, correlation coefficients were calculated for each direction 
and compared with existing works in the literature. Table 1 presents the obtained results. As can be observed, the correlation 
coefficients of the original images are very high, whereas those of the encrypted images are very low. It can also be noted that 
the correlation coefficients of the encrypted images are close to zero in all three directions and for both images considered. 
Furthermore, for all the analyzed directions, the obtained values are very close to those reported in the works of [32–34]. 
These results indicate that the proposed encryption system exhibits good resistance against autocorrelation attacks. 

Table 1. Correlation coefficients of original and encrypted images 

Images Direction Original Encrypted    

   Proposed scheme [33] [34] [35] 

Lena 
Horizontal 0.9093 0.0080 0.019732 0.0069 0.0074 

Vertical 0.9617 0.0026 0.002467 0.0479 0.0096 
Diagonal 0.8853 0.00034 0.004438 0.0075 0.0193 

4.2.3 EVALUATION OF DIFFERENTIAL ATTACKS 

The ability of the proposed image encryption algorithm to resist differential attacks is evaluated using the NPCR (Number 
of Pixels Change Rate) and UACI (Unified Average Changing Intensity) metrics. The simulation results, compared with those 
reported in the literature, are presented in Table 2. As can be observed, the obtained NPCR and UACI values are close to their 
ideal values. Moreover, these results are very similar to those reported in existing works. This observation demonstrates that 
the proposed algorithm exhibits high resistance to differential attacks. 

Table 2. NPCR and UACI for the image simulation comparing our scheme with other literature methods 

 Propose scheme [35] [36] [37] 

File NPCR UACI NPCR UACI NPCR UACI NPCR UACI 
Lena 99.62 33.51 99.60 33.51 - - 99.6052 33.4561 

Cameraman 99.64 33.52 99.61 33.56 99.6196 33.4153 - - 
Baboon 99.61 33.52 99.59 33.53 99.6089 33.4071 99.6125 33.4655 

4.2.4 ENTROPY EVALUATION 

Since entropy is an important criterion in the evaluation of a cryptosystem, we analyzed this indicator to determine the 
degree of disorder in the distribution of pixel values in the image. The entropy values of the original and encrypted images are 
shown in the Table 3. It can be seen that the entropy values of the encrypted images are close to 8, which means that the bites 
are uniformly distributed. 

Table 3. Entropy values for encrypted and original images 

Images Original Encrypted    

  Proposed scheme [37] [38] [39] 

Lena 7.7792 7.9962 - 7.999359 7.997052 
Cameraman 7.0097 7.9971 7.9993 - 7.99672 

Baboon 7.3596 7.9960 7.9993 7.999380 7.99742 

4.2.5 KEY SENSITIVITY EVALUATION 

Key sensitivity is the fundamental property of a chaotic cryptosystem. A slight modification of the original keys should give 
different results during encryption and/or decryption. Fig. 13 shows the sensitivity test for encryption and decryption. The 
results show that the use of modified keys in the encryption phase produces a visibly different image. At the decryption stage, 
the use of a modified key does not reconstitute the original image. The encryption algorithm presented is highly key-sensitive. 
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Fig. 13. Key sensitivity test for encryption and image encryption 

4.2.6 EVALUATION OF KEY SPACE 

To evaluate the algorithm resistance to brute-force attacks, the entire key space is determined and presented in Table 4. 
The proposed scheme key space consists of the set of initial conditions (𝑥_1, 𝑥_2, 𝑥_3 ) and parameters 
(𝜆1, 𝑟1, 𝛽1, 𝜆2, 𝑟2, 𝛽2, 𝜆3, 𝑟3, 𝛽3) of the two chaotic systems. For a machine with a precision of 10−15the key space is calculated 
as follows 〖(10〗15)8 = 10180, which is sufficiently large. This situation allows us to deduce that our proposed algorithm is 
capable of resisting brute force attacks. In addition, a comparison of this encryption scheme with other chaotic image 
encryption schemes is carried out. The results shown in Table 4 indicate that the key space of this algorithm is also larger than 
that of other algorithms. 

Table 4. Comparison of the key space of the proposed algorithm with other algorithms 

Algorithm Key space 

[14] 1075 
[40] 1090 
[41] 10105 

Proposed scheme 1010 

4.2.7 EVALUATION OF IMAGE ENCRYPTION TIME 

Execution time is an important measure for guaranteeing the efficiency of an encryption algorithm. By evaluating the 
execution time of the entire encryption process for the two images under consideration, we obtained 1.255517 seconds and 
1.567479 seconds for the Lena and Cameraman images respectively. However, it should be noted that the encryption execution 
time for the Lena image is comparable to the work presented in the literature. The result illustrated in Table 6 shows that the 
proposed algorithm is faster than the authors’ image encryption schemes. 
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Table 5. Encryption execution time analysis 

Algorithm Execution time (s) 

[42] 2.792 

[43] 2.9 

[44] 4.601 

[45] 7.788 

[46] 4.821 

Proposed scheme 0.99 

5 CONCLUSION 

In this article, we propose a new one-dimensional discrete chaotic map for enhancing the security of chaos-based 
encryption systems. The proposed discrete system combines a nonlinear polynomial structure with a sinusoidal term, 
controlled by several independent parameters, which allows for a wider chaotic range and improved dynamic complexity. A 
detailed analysis of its chaotic properties, including bifurcation diagrams, the Lyapunov exponent, sensitivity to initial 
conditions and parameters, and approximate entropy, confirms the robust chaotic nature of the proposed map. Building on 
the advantages of the new map, we use it to develop an image encryption algorithm. The scheme is based on a permutation 
operation and two diffusion operations, driven three times by the new map. Experimental results and security analyses, 
including the study of histograms, correlations between adjacent pixels, key sensitivity, and NPCR and UACI metrics, 
demonstrate that the proposed algorithm offers good performance and strong resistance to statistical and differential attacks. 
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