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ABSTRACT: Measuring all carbon stock changes caused by forest degradation within a country at the same level of detail and 

accuracy will likely not be efficient. In particular the considerations of IPCC source category analysis, and the fact that many 

degradation activities are focused on specific areas within the country help to make the monitoring more targeted and 

efficient to capture the most important components with priority. 

To estimate forest degradation, countries need to assess carbon stock changes and the total area undergoing degradation, 

ideally for different types of degradation (i.e. fire, logging, and fuel wood harvesting). The assessment of changes in carbon 

stocks requires consistent ground data while the evaluation of the total area undergoing degradation is more reliably 

measured through remote sensing for the major degradation processes, in particular for developing countries. The particular 

problem of measuring forest degradation is the lack of field based forest data for developing countries. 

KEYWORDS: Forest degradation, remote sensing techniques. 

1 INTRODUCTION 

Forest degradation is a serious problem, environmentally, socially and economically particularly in developing countries. It 

is estimated that as much as 850 million hectares [24] of forests and forest lands are degraded. Yet it is difficult to quantify 

the scale of the problem since at national and sub-national levels forest degradation is perceived differently by the various 

stakeholders who have different objectives.  

Forest degradation has adverse impacts on forest ecosystems and on the goods and services they provide. Many of these 

goods and services are linked to human well-being and some to the global carbon cycle and thus to life on Earth. 

Policy makers and forest managers need information on forest degradation. They need to be able to monitor changes 

happening in forests.  They need to know where forest degradation is taking place, what causes it and how serious the 

impacts are in order to prioritize the allocation of scarce human and financial resources to the prevention of degradation and 

to the restoration and rehabilitation of degraded forests [35]. 

In addition, analyzing forest degradation is required to demonstrate efforts to tackle the problem and meet global 

objectives and targets. The proposed new Biodiversity Target includes a target on reduction of forest degradation. The 

agreement to establish a mechanism under the UNFCCC aimed at reducing emissions from deforestation and forest 
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degradation (REDD) in developing countries has added a political dimension and the potential availability of substantial funds 

to reard developing countries that manage to reduce the level of forest degradation. 

Accurate and up-to-date land use/cover assessments are important to define natural resource management strategies 

and policies for conservation especially in forest areas. Understanding the causes and consequences of land cover change 

and their cascading effects on many components of functional ecosystems, are the case for identifying negative effects on 

biological resources and human development [17], [42]. 

To measure forests worldwide, satellite imagery is a practical necessity. Aerial observations are expensive at present and 

only cover small areas at a time. Ground measurements are also expensive and are logistically challenging and spatially 

restricted. Neither aerial nor ground observations are well suited to continuous measurement of the entire global forest. 

Satellite mapping is necessary to detect forest degradation and regrowth in remote tropical forests [11]. The greatest 

strengths of satellite-based measurements are their unparalleled, unbiased measurements, their monthly to daily frequency, 

and above all their synoptic nature. Satellites provide a general view of the whole Earth that is not possible with any other 

forest measurement method. 

Satellite remote sensing provides a meaningful method for detecting vegetation or land cover changes [5] Changes in the 

composition and spatial distribution of forest cover are a major environmental concern, affecting many biological, 

biochemical and ecological processes. Remotely sensed data are widely used to understand and manage environmental 

resources by determining land cover/use changes such as quantification of forest degradation. By comparing the images 

taken in different times, the changes in landscape level can be easily detected. Monitoring land cover and land cover change 

at regional and global scales often requires sensors data to identify and map landscape features and patterns with sufficient 

detail [50]Detailed and updated resource inventories are needed to support land use planning and sustainable management. 

This literature review addresses how remote sensing techniques can be used to assess forest degradation directly or 

indirectly by means of different types of degradation process occurring in the forest area. 

2 REMOTE SENSING: AN OVERVIEW 

2.1 DEFINITIONS 

Remote sensing can be defined as learning something about an object without touching it. As human beings, we remotely 

sense objects with a number of our senses including our eyes, noses, and ears [46]. For [19]remote sensing is the science and 

art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is 

not in contact with the object, area or phenomenon under investigation. 

The field of remote sensing can be divided into two general categories: analog remote sensing and digital remote sensing. 

Analog remote sensing uses film to record the electromagnetic energy. Digital remote sensing uses some type of sensor to 

convert the electromagnetic energy into numbers that can be recorded as bits and bytes on a computer and then displayed 

on a monitor. 

2.1.1 ANALOG REMOTE SENSING 

The field of analog remote sensing can be divided into two general categories: photointerpretation and photogrammetry. 

Photo interpretation is the qualitative or artistic component of analog remote sensing. Photogrammetry is the science, 

measurements, and the more quantitative component of analog remote sensing. Both components are important in the 

understanding of analog remote sensing. 

2.1.2 DIGITAL REMOTE SENSING 

While analog remote sensing has a long history and tradition, the use of digital remote sensing is relatively new and was 

built on many of the concepts and skills used in analog remote sensing.Digital remote sensing effectively began with the 

launch of the first Landsat satellite in 1972.Since the launch of Landsat 1, there have been tremendous strides in the 

development of not only other multispectral scanner systems, but also hyperspectral and digital camera systems. However, 

regardless of the digital sensor there are a number of key factors to consider that are common to all. For [26] these factors 

include: (1) spectral resolution, (2) spatial resolution, (3) radiometric resolution, (4) temporal resolution, and (5) geographic 

extent. 

- Spectral resolution 
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Spectral resolution is typically defined as the number of portions of the electromagnetic spectrum that are sensed by the 

remote sensing device.These portions are referred to as “bands”. A second factor that is important in spectral resolution is 

the width of the bands. Traditionally, the band widths have been quite wide in multispectral imagery, often covering an 

entire color (e.g., the red or the blue portions) of the spectrum. If the remote sensing device captures only one band of 

imagery, it is called a panchromatic sensor and the resulting images will be black and white, regardless of the portion of the 

spectrum sensed. More recent hyperspectral imagery tends to have much narrower band widths with several to many bands 

within a single color of the spectrum. 

 

Figure 1.Comparison of spectrums of vegetation,bare soil,snow and water (Source: Asner et al,2004) 

- Spatial resolution 

Spatial resolution is defined by the pixel size of the imagery. A pixel or picture element is the smallest two-dimensional 

area sensed by the remote sensing device. An image is made up of a matrix of pixels. The digital remote sensing device 

records a spectral response for each wavelength of electromagnetic energy or “band” for each pixel. This response is called 

the brightness value (BV) or the digital number (DN). In [46] the range of brightness values depends on the radiometric 

resolution. If a pixel is recorded for a homogeneous area then the spectral response for that pixel will be purely that type. 

However, if the pixel is recorded for an area that has a mixture of types, then the spectral response will be an average of all 

that the pixel encompasses. Depending on the size of the pixels, many pixels may be mixtures. 

 

 

Figure 2. Spatial resolution of different types of sensors, respectively for Spotand Ikonos(Source: Canada center for remote sensing,2003) 

- Radiometric resolution 

The numeric range of the brightness values that records the spectral response for a pixel is determined by the radiometric 

resolution of the digital remote sensing device. These data are recorded as numbers in a computer as bits and bytes [28] A 

bit is simply a binary value of either 0 or 1 and represents the most elemental method of how a computer works. If an image 

is recorded in a single bit then each pixel is either black or white. No gray levels are possible. Adding bits adds range. If the 
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radiometric resolution is 2 bits, then 4 values are possible (2 raised to the second power equals 4). The possible values would 

be 0, 1, 2, and 3. Early Landsat imagery had 6-bit resolution (2 raised to the sixth power equals 64) with a range of values 

from 0 to 63. Most imagery today has a radiometric resolution of 8 bits or 1 byte (range from 0 to 255). Some of the more 

recent digital remote sensing devices have 11 or even 12 bits. 

- Temporal Resolution 

Temporal resolution is defined by how often a particular remote sensing device can image a particular area of interest. 

Sensors in airplanes and helicopters can acquire imagery of an area whenever it is needed. Sensors on satellites are in a given 

orbit and can only image a selected area on a set schedule. Landsat is a nadir sensor; it only images perpendicular to the 

Earth’s surface, and therefore can only sense the same place every 16 days. Other sensors are pointable and can acquire off-

nadir imagery. 

 

Figure 3 temporal resolution movement of a sensor  

 

(Source: Canada center for remote sensing, 2003) 

 

Table 1. Digital characteristics of some satellites are given below, personal compilation  

Satellite Sensor Ground resolution Radiometric  resolution Temporal resolution 

Landsat MSS 80m - 18 days 

Landsat Thematic Mapper 30 m 6 bits 16 days 

Spot XS(multispectral) 20 m 6 bits 6 days 

Spot panchromatic 10 m 6 bits 5 days 

Ikonos Multispectral 4 m 11 bits 2.9 days 

Ikonos Panchromatic 1 m 11 bits 2.9 days 

Quickbird --- 0.5 m 11bits 1 to 3.5 days 

2.2 DIGITAL IMAGE ANALYSIS 

Digital image analysis in digital remote sensing is analogous to photo interpretation in analog remote sensing. It is the 

process by which the selected imagery is converted/processed into information in the form of a thematic map. Digital image 

analysis is performed through a series of steps. These steps include: (1) image acquisition/selection, (2) pre-processing 

including image enhancement, (3) classification, (4) post-processing, and (5) accuracy assessment. 

2.2.1 IMAGE ACQUISITION/SELECTION 

Selection or acquisition of the appropriate remotely sensed imagery is foremost determined by the application or 

objective of the analysis and the budget. Once these factors are known, the analyst should answer the questions presented 

previously. These questions include: what spectral, spatial, radiometric, temporal resolution and extent are required to 

accomplish the objectives of the study within the given budget? Once the answers to these questions are known, then the 

analyst can obtain the necessary imagery either from an archive of existing imagery or request acquisition of a new image 

from the appropriate image source. 
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2.2.2 PRE-PROCESSING 

Pre-processing is defined as any technique performed on the image prior to the classification. There are many possible 

pre-processing techniques. However, three of the most important techniques include: geometric registration, 

radiometric/atmospheric correction, and numerous forms of image enhancement. 

There are many types of digital image processing enhancements that can be applied to remote sensor data. The 

enhancements can be applied to individual bands of imagery (e.g., the application of a low-pass filter) or to all bands of the 

imagery (e.g., principal components analysis).  

2.2.3 CLASSIFICATION 

Classification of digital data has historically been limited to spectral information (tone/color). While these methods 

attempted to build on the interpretation methods developed in analog remote sensing, the use of the other elements of 

photo interpretation beyond just color/tone has been problematic. In addition, digital image classification has traditionally 

been pixel based. A pixel is an arbitrary sample of the ground and represents the average spectral response for all objects 

occurring within the pixel. The earliest classification techniques tended to mimic photo interpretation and were called 

supervised classification techniques. These methods were followed by statistical clustering routines that were called 

unsupervised classification techniques. Both techniques were based completely on the spectral (color/tone) data in the 

imagery. 

2.2.3.1 SUPERVISED VS. UNSUPERVISED CLASSIFICATION 

Supervised classification is a process that mimics photo interpretation. The analyst “trains” the computer to recognize 

informational types such as land cover or vegetation in a similar way that the photo interpreters train themselves to do the 

same thing. However, the interpreter uses the elements of photo interpretation while the computer is limited to creating 

statistics (means, minimums, maximums, variances, and co-variances) from the digital spectral responses (color/tone). 

Unsupervised classification uses a statistical clustering algorithm to group the pixels in the imagery into spectral clusters. 

These clusters are spectrally unique, but may not be informationally unique. In other words, a single cluster may be a 

combination of a number of informational types (e.g., cluster 4 may be a combination of white pine and grass). The analyst 

decides how many unique clusters are to be extracted from the imagery. 

 
Figure 4. A schematic diagram of general image processing procedures, (Source: Campbell, 2007) 

2.2.3.2 COMBINED APPROACHES 
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Many remote sensing scientists have attempted to combine the supervised and unsupervised techniques together to take 

the maximum advantage of these two techniques while minimizing the disadvantages. Many of these examples can be found 

in the literature. A technique by [28] 2.2.3.3. Advanced approaches 

Using supervised or unsupervised classification approaches only work moderately well. Even the combined approaches 

only improve our ability to create accurate thematic maps a little more than using each technique separately. Therefore, a 

large amount of effort has been devoted to developing advanced classification approaches to improve our ability to create 

accurate thematic maps from digital remotely sensed imagery. While there are many advanced approaches, this paper will 

only mention three: (1) classification and regression tree (CART) analysis; (2) artificial neural networks (ANN); and (3) support 

vector machines (SVM). 

2.2.3.3 OBJECT-BASED APPROACHES (POLYGON APPROACH) 

By far the greatest advance in classifying digital remotely sensed data in this century has been the widespread 

development and adoption of object-based image analysis (OBIA). Traditionally, all classifications were performed on a pixel 

basis. Given that a pixel is an arbitrary delineation of an area of the ground, any selected pixel may or may not be 

representative of the vegetation/land cover of that area.In the OBIA approach, unlabeled pixels are grouped into meaningful 

polygons that are then classified as polygons rather than individual pixels. This method increases the number of attributes 

such as polygon shape, texture, perimeter to area ratio, and many others that can be used to more accurately classify that 

grouping of pixels [53].Polygons are created from pixels in OBIA using a method called segmentation. There are a number of 

current image analysis software packages that provide the means of performing OBIA. In all these algorithms, the analyst 

must select a series of parameters that dictate how the segments or polygons are generated. Depending on the parameters 

selected, it is possible to create large polygons that may incorporate very general vegetation/land cover types or very small 

polygons that may divide even a specific cover type into multiple polygons. The power of the segmentation process is 

twofold. First, the imagery is now divided into polygons that can, in many ways, mimic the polygons that may have been 

drawn by an analyst that was manually interpreting this same image. In this way, some of the additional elements of manual 

interpretation mentioned earlier in this paper become relevant for digital image analysis. Secondly, as previously mentioned, 

the creation of polygons results in a powerful addition of attributes about the polygons that can be used by the classification 

algorithm to label the polygons. Both these factors significantly add to our ability to create accurate thematic maps. 

2.2.4 POST-PROCESSING 

Post-processing can be defined as those techniques applied to the imagery after it has been through the classification 

process—in other words, any techniques applied to the thematic map. It has been said that one analyst’s pre-processing is 

another analyst’s post-processing. It is true that many techniques that could be applied to the digital imagery as a pre-

processing step may also be applied to the thematic map as a post-processing step. This statement is especially true for 

geometric registration. While currently most geometric correction is performed on the original imagery, such was not always 

the case. Historically, to avoid resampling the imagery and potentially removing important variation (information), the 

thematic map was geometrically registered to the ground instead of the original imagery.  

One of the most important uses of remotely sensed data is the identification of change through time. Images can be used 

to simply identify binary “change versus no-change”or “from-to change” in which the change from one land cover category 

to another is carefully recorded and mapped. There are a significant number of change detection algorithms and methods 

that can be used [29] 

2.2.5 ACCURACY ASSESSMENT 

Accuracy assessment is a vital step in any digital remote sensing project. The methods summarized here can be found in 

detail in [47] historically, thematic maps generated from analog remotely sensed data through the use of photo 

interpretation were not assessed for accuracy. However, with the advent of digital remote sensing, quantitatively assessing 

the accuracy of thematic maps became a standard part of the mapping project. 

Once the error matrix is generated, some basic descriptive statistics including overall, producer’s, [46]and user’s 

accuracies can be computed. In addition, there are a number of analysis techniques that can be performed from the error 

matrix. Most notable of these techniques is the Kappa analysis, which allows the analyst to statistically test if one error 

matrix is significantly different than another. 
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2.3 DIGITAL IMAGE TYPES 

2.3.1 MULTI SPECTRAL IMAGERY 

The dominant digital image type for the last 40 years has been multispectral imagery, from the launch of the first Landsat 

in 1972 through the launch of the latest GeoEye and DigitalGlobe sensors[9] Multispectral imagery contains multiple 

bands(more than 2 and less than 20) across a range of the electromagnetic spectrum. While there has been a marked 

increase in spatial resolution, especially of commercial imagery during these 40 years, it should be noted that there continues 

to be a great demand for mid-resolution imagery. The importance of continuing to obtain imagery with a spatial resolution of 

20–30 meters and with a good spectral resolution that includes the visible, near -, and middle-infrared portions of the 

electromagnetic spectrum cannot be understated. There is a special niche that this imagery fills that cannot be replaced by 

the higher-spatial-resolution imagery that costs significantly more to purchase. There will be increased uses of the higher-

spatial-resolution data that continue to improve all the time, but this increase will not reduce the need for mid-resolution 

multispectral imagery. 

2.3.2 HYPERSPECTRAL IMAGERY 

Hyperspectral imagery is acquired using a sensor that collects many tens to even hundreds of bands of electromagnetic 

energy. This imagery is distinguished from multispectral imagery not only by the number of bands, but also by the width of 

each band. Multispectral imagery senses a limited number of rather broad wavelength ranges that are often not continuous 

along the electromagnetic spectrum. Hyperspectral imagery, on the other hand, senses many very narrow wavelength ranges 

(e.g., 10 microns in width) continuously along the electromagnetic spectrum [34] Hyperspectral imagery has changed the way 

we perform digital image analysis. Given this imagery collected over narrow bandwidths across a large portion of the 

electromagnetic spectrum, it is possible to create spectral libraries of various information types and compare these for 

identification on the imagery. These libraries exist for a variety of rock and mineral types and have even been created for 

some simple land cover/vegetation classifications. These detailed spectral patterns also allow for the analysis of the chemical 

content of vegetation and other land cover. For [10] the uses of hyperspectral imagery for environmental studies, especially 

related to pollution and other hazards, have tremendous potential. Currently, significant research is occurring in this field. As 

the costs associated with this technology continue to decline, more and more uses of hyperspectral imagery will be 

developed. 

2.3.3 DIGITAL CAMERA IMAGERY 

Most digital camera imagery is collected as a natural color image (blue, green, and red) or as a color infrared image 

(green, red, and near infrared). Recently, more projects are acquiring all four wavelengths of imagery (blue, green, red, and 

near infrared). The spatial resolution of digital camera imagery is veryhigh with 1–2 meter pixels being very common and 

some imagery having pixels as small as 15 cm. 

2.3.4 OTHER TYPES OF IMAGERY 

There are other sources of digital remotely sensed imagery that have not been presented in this paper. These sources 

include RADAR and LiDAR. Both these sources of imagery are important, but they fall beyond the scope of this paper. RADAR 

imagery has been available for many years. However, only recently has the multifrequency component of RADAR imagery 

become available (collecting frequencies of imagery simultaneously and not just multiple polarizations) that significantly 

improves the ability to create thematic maps from this imagery. LiDAR has revolutionized the collection of elevation data 

(e.g., 45  and is a valuable source of information that can be used in creating thematic maps (e.g., [2]). In the last few years, 

these data have become commercially available and are being used as a vital part of many mapping projects. 

 

 

 

3 FOREST DEGRADATION 

3.1 KEY CONCEPTS TO FOREST DEGRADATION 
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[23] developed a way for understanding forest degradation as followed, common indicators for monitoring and assessing 

forest degradation can be developed for the following key elements to be used in assessing forest degradation(Biodiversity 

(e.g. species composition and richness, habitat fragmentation); 

• Biomass (e.g. growing stock, forest structure); 

• Forest goods obtained (compared against sustainably managed forests); 

• Forest health (e.g. fire, pest and diseases, invasive and alien species); 

• Soil quality (as indicated by cover, depth and fertility). 

For [35] the term degradation refers to a change process within the forest, which negatively affects the characteristics of 

the forest.  The combination of various forest characteristics (forest quality) can be expressed as the structure or function, 

which determines the capacity to supply forest products and services Forests may be degraded in terms of loss of any of the 

goods and services that they provide (wood, food, habitat, water, carbon storage and other protective socio-economic and 

cultural values. 

According to [18] degradation is typically caused by disturbances, which vary in terms of the extent, severity, quality, 

origin and frequency. The change process can be natural (caused by fire, storm, drought, pest, disease) or it can be human 

induced (unsustainable logging, excessive fuelwood collection, shifting cultivation, unsustainable hunting, overgrazing). The 

latter can be intentional (direct) through for example excessive logging, overgrazing, too short a fallow period or it can be 

unintentional (indirect) for example through spreading of an invasive alien species or pestilence or road construction that 

might open a previously inaccessible area for encroachment [35]. 

Perceptions regarding forest degradation are many and varied, depending on the driver of degradation and the main 

point of interest. In relation to REDD, it is likely to entail a reduction in the capacity to sequester carbon, but a forest may 

also be degraded in terms of loss of biological diversity, forest health, productive or protective potential or aesthetic value. 

Forest degradation is generically defined as the reduced capacity of a forest to provide goods and services [18]. However, 

in the context of climate change, the International panel on climate change, [23] developed a definition of forest degradation 

that focuses on human-induced changes in the carbon cycle in the long run: 

A direct human-induced long-term loss (persisting for X years or more) of at least Y% of forest carbon stocks [and forest 

values] since time T and not qualifying as deforestation or an elected activity under Article 3.4 of the Kyoto Protocol [24]  

MAIN CAUSES OF FOREST DEGRADATION 

Many natural factors and human activities can affect forest health and vitality leading to a gradual or sudden decrease in 

forest growth, tree mortality and to a decline in the provision of forest goods and services. Wild or human-induced fires, 

pollution, floods, nutrients and extreme weather conditions such as storms, hurricanes, droughts, snow, frost, wind and sun 

are among abiotic agents that may be responsible for a loss of health and vigor of forest ecosystems. Biotic influences of 

forest conditions include insect pests, diseases and invasive species and can either consist of fungi, plants, animal or bacteria. 

Humans are also a major factor of forest health deterioration as overexploitation, competing land uses, poor harvesting 

techniques or management can negatively impact forest ecosystems. 

In the study of forest degradation can have any number of causes, dependent on resource condition, environmental 

factors, socio-economic and demographic pressure and “incidents” – e.g. pests, disease, fire, and natural disasters. The 

understanding and separation of different degradation processes is important for the definition of suitable methods for 

measuring and monitoring. Various types of degradation will have different effects on the forest carbon storage and result in 

different types of indicators that can be used for monitoring degradation using in situ and remote methods (i.e. trees being 

removed, canopy damaged, etc.).  

In this review, the emphasis is on those forms of forest degradation that are caused by direct human impacts on the 

forests (i.e wood removal) or indirect human impacts on the forests(i.e. long term forest management that favors the 

occurrence of fire).  
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4 MAPPING FOREST DEGRADATION 

4.1 REMOTE SENSING AND GLOBAL FOREST MEASUREMENT 

For any worldwide forest monitoring effort to succeed, there must be consensus on forest definitions, past reference 

maps (so that change can be detected), and selected forest metrics. We have chosen the Forest Identity [44] as an organizing 

principle for the central metrics of this study. The Forest Identity relates four forest attributes (area, volume [density of 

growing stock], biomass, and sequestered carbon) that provide a useful starting point for global forest monitoring. Current 

maps of forest area have medium to high accuracy. Monitoring volume, biomass, and carbon on a regional to global scale is 

possible with current technology. Similarly, we can develop past reference maps for forest area (maps of what an area once 

looked like), but past reference maps for volume, biomass, or carbon will require innovative reprocessing of old imagery. For 

forest area, “accuracy” is roughly defined as the percentage of pixels in the remote sensing imagery that correctly identify 

land-cover type. For forest volume, biomass, and carbon, accuracy refers to the match between predictions from remote 

imagery and observed ground measurements. 

Designing a satellite-based, worldwide forest monitoring system requires choices in budgeting, processing logistics, 

sampling frameworks, and the collection of validation (or “ground-truth”) data from forest inventories and high-resolution 

imagery. Collection of ground-truth data is typically necessary as a means of determining the accuracy of remote sensing. 

According to [47] these data are particularly essential when attempting to estimate forest volume, biomass, and carbon using 

remote sensing technology. Archiving and standardizing global ground-truth data for forests would be a significant 

contribution to global forest science. Ground data, aerial imagery, and high-resolution satellite imagery are expensive and 

require coordination in a sampling hierarchy for efficiency. 

In current coarse-resolution world forest maps, forest area is measured with medium accuracy as two classes (forest/non-

forest) [12]) or categorized with low accuracy into homogenous forest types based on leaf persistence (for example, 

evergreen forest).Recent improvements in classification techniques and the combination of distinct types of satellite imagery 

(called imagery fusion) have allowed moderate-resolution mapping of forest types with high accuracy (80–90 percent). 

Currently, complete forest clearing can be detected with the highest accuracy. With current technology, it remains difficult to 

distinguish primary forests from tree plantations and older secondary forests in remote sensing images. It is also challenging 

to detect forest degradation in which a forest is partially cleared by human activity. Significant progress on these problems 

has been made in certain geographic regions, but accurate global forest maps with multiple classes remain elusive. In the 

years between 2009 and 2015, we can expect to see numerous improvements that promise to address many of these 

challenges. Some of the anticipated advances include: active and passive satellite imagery is sensitive to forest structure 

(both vertical and horizontal), and forest structure can be used to estimate forest volume, biomass, and aboveground 

carbon. Both SAR and LIDAR are directly sensitive to forest volume. SAR images tend to saturate or fail to penetrate in dense 

forests but they can cover large areas. Conversely, LIDAR data do not saturate but can only measure small areas. In open 

forests, stereo and high-resolution imagery can also measure forest height and canopy structure and have the potential to 

aid LIDAR and SAR measurements of forest volume and biomass. 

Future satellite launches of LIDAR, long wavelength SAR, and In SAR sensors will significantly improve estimates of 

biomass, forest volume, and carbon in the near term and may provide information crucial to the development of a global, 

ground-level elevation model. If such a model were available, scientists could create accurate, worldwide maps of forest 

height and, in turn, generate global reference maps that estimate historical forest biomass as far back as the mid-1990s. 

4.2 FOREST CHANGE DETECTION ANALYSIS 

Measuring forest area is distinct from measuring changes in forest area, for both practical and quantitative reasons. 

Practically, increases in forest area often result from land-cover types that are quite spectrally distinct from the original 

forest and would not be classified as forest area. In temperate and tropical areas, woody encroachment into grasslands 

creates spectrally and structurally distinct forests in unexpected areas, and forest regrowth on abandoned farms creates 

distinct secondary forests [49] Deforestation results in the conversion of forests to a variety of agricultural land covers, 

including spectrally similar tree plantations. Tropical forest regrowth is very rapid, making ten- to twenty-year-old forests 

difficult to distinguish from primary forest on a satellite image. 

Since early days of earth observation systems, various techniques of change detection have been developed for forest 

monitoring using high resolution optical remote sensing. These approaches are focused on the identification of forest cover 

change, described by [23] including among others forest clearing, regrowth, damage and disease. Different reviews have 

been proposed in the literature for summarizing and comparing these different approaches [4] Coppin and  [16], [38][44] 
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However, as new change detection methods are still designed and with the recent development of image segmentation 

applications, change detection approaches are regrouped into three categories: (1) visual interpretation,(2) pixel-based 

and(3) object-based methods. 

4.3 METHODS TO EVALUATE FOREST DEGRADATION WITH REMOTE SENSING 

• Direct detection of degradation processes (forest canopy damage); 

• Indirect approaches (observation of human infrastructure). 

4.3.1 REMOTE SENSING METHODS TO MEASURE CHANGES IN FOREST LAND USES 

While most countries have been reporting their changes in forest area affected by degradation based on their National 

Forest Inventories, the measurement and monitoring of forest change land use through remote sensing offers a series of 

advantages: i) it represents an operational, consistent, coherent, transparent and fairly accurate way of reporting on change 

in forest land-use, which allows for near-real reporting on land use changes, ii) it is cost and time effective, iii) it offers data 

over remote and logistically complicated regions, iv) it offers a high frequency of data that help minimize seasonality 

problems, v) it is the only approach that objectively offers information on historical trends, and iii) it favors the control of 

leakage and permanence issues.  

However, it also has several disadvantages: i) it is hampered by clouds, ii) it is limited by the technical capacity to sense 

and record the change in canopy cover with small changes likely not to be apparent unless they produce a systematic pattern 

in the imagery, iii) optical remote sensing is not useful to identify sub-canopy changes and therefore it is insensitive to under-

canopy forest degradation (i.e. certain fire types, certain overgrazing, certain logging activities), and iv) not all degradation 

processes can be monitored with high certainty using remote sensing data. Table 2 offers a list of degradation processes that 

are best detected through remote sensing. Of course, a mixed approach would be desirable. 

Table 2:  Forest degradation activities and their degree of detection using Landsat-type data, (Source: Peres et al., 2006). 

Highly Detectable Detection limited & increasing 

data/effort 

Detection very limited 

• Deforestation 

• Forest fragmentation 

• Recent slash-and-burn agriculture 

• Major canopy fires 

• Major roads 

• Conversion to tree monocultures 

• Hydroelectric dams and other forms 

of flood disturbances 

• Large-scale mining 

• Selective logging 

• Forest surface fires 

• A range of edge-effects 

• Old-slash-and-burn agriculture 

• Small scale mining 

• Unpaved secondary roads (6-20m 

wide) 

• Selective thinning of canopy trees 

• Harvesting of most non-timber 

plants products 

• Old-mechanized selective logging 

• Narrow sub-canopy roads (<6m 

wide) 

• Understorey thinning and clear 

cutting 

• Invasion of exotic species 

 

Independently of the approach chosen, the development of a monitoring system for degradation first requires that the 

causes of degradation be identified and the likely impact on the carbon stocks be assessed. FAO, together with the Members 

of the Collaborative Partnership on Forests (CPF) undertook a special study on forest degradation to identify the parameters 

of forest degradation and the best practices for assessing them.  

Mapping forest degradation with remote sensing data is more challenging than mapping deforestation because the 

degraded forest is a complex mix of different land cover types (vegetation, dead trees, soil, shade) and the spectral signature 

of the degradation changes quickly (i.e., < 2 years) [14]). High spatial resolution sensors such as Landsat, ASTER and SPOT 

have been mostly used so far to address forest degradation. However, very high resolution satellite imagery, such as Ikonos 

or Quick bird, and aerial digital imagery acquired with videography has been used as well. Methods for mapping forest 

degradation range from simple image interpretation to highly sophisticated automated algorithms [40]. 
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4.3.2 DIRECT METHODS OF MAPPING FOREST DEGRADATION  

In the direct method, and under a degradation definition based on changes in carbon stocks, forest canopy gaps, small 

clearings, and the structural forest changes resulting from disturbance are the features of interest to be enhanced and 

extracted from the satellite imagery. Among the most classically used techniques are: i) visual interpretation, which can 

easily detect canopy damage areas in very high spatial resolution imagery; ii) automate segmentation; iii) spectral mixing 

analysis for logging disturbances [20], [45] and fire [11] lacunarity indices for canopy structural characterization [54] vi) hyper 

spectral automated canopy identification [34]. 

 

 

Figure 5: Spectral mixing analysis (SMA) as a way to follow the degradation dynamics of Amazonian lowland forests using 

Ikonos sensors [11]  

There are limiting factors to be taken into consideration when mapping direct forest degradation [12] First, it requires 

frequent mapping, at least annually, because the spatial signatures of the degraded forests change after one year. 

Additionally, it is important to keep track of repeated degradation events that affect more drastically the forest structure and 

composition resulting in greater changes in carbon stocks. Second, the human-caused forest degradation signal can be 

confused with natural forest changes such as wind throws and seasonal changes. Confusion due to seasonality can be 

reduced by using more frequent satellite observations. Third, all the methods described above are based on optical sensors 

which are limited by frequent cloud conditions in tropical regions. Finally, higher levels of expertise are required to use the 

most robust automated techniques requiring specialized software and investments in capacity building. 

4.3.3 INDIRECT METHODS OF FOREST DEGRADATION MAPPING 

The indirect method is useful when degradation intensity is low and the area to assess is large, when satellite imagery is 

not easily accessible, or when the direct approach cannot be applied for whatever other reason. An example of a useful 

indirect approach is the “intact forest” approach where the spatial distribution of human infrastructures (i.e. roads, 

population centres) are used as proxies, so that the absence of these are used to identify forest land without anthropogenic 

disturbance (intact forests) so as to assess the carbon content present in the disturbed and non-disturbed forest lands [13], 

[41]Intact forests: fully-stocked (any forest with tree cover between 10% and 100% but must be undisturbed, i.e. there has 

been no timber extraction); 

� Non-intact forests: not fully-stocked (tree cover must still be higher than 10% to qualify as a forest under the existing 

UNFCCC rules, but in our definition we assume that in the forest has undergone some level of timber exploitation or 

canopy degradation). 
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Scenario modelling for forest degradation would be another indirect method which could be applied to estimate both 

future and historical forest degradation dynamics. [7] published an example of a deforestation modelling approach for the 

Amazon Basin that produced annual maps of simulated future deforestation under user defined scenarios of highway paving, 

Protected Area (PA) networks, PA effectiveness, deforestation rates and deforested land ceilings. With the right support from 

field data, a similar modeling approach could be used for (re)constructing historical and future scenarios of forest 

degradation. 

 

 

Figure 6: Estimation of intact and non-intact forests based on areas of influence (buffers) from human infrastructures (Soares-Filho et al., 

2006). 

4.4 RELEVANCY OF DIFFERENT FOREST DEGRADATION APPROACH 

In the study of [33] they tried to develop a relevancy of different forest degradation assessment in Nepal (Table 3). 
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Table 3 Relevancy of different forest degradation approach, [33] 

 

5 METHODOLOGICAL APPROACH FOR FOREST DEGRADATION ASSESSMENT USING REMOTE SENSING 

As we said before that common indicator for monitoring and assessing forest degradation could be developed for the 

following key elements to be used in assessing forest degradation: 

• Biodiversity (e.g. species composition and richness, habitat fragmentation); 

• Biomass (e.g. growing stock, forest structure); 

• Forest goods obtained (compared against sustainably managed forests); 

• Forest health (e.g. fire, pest and diseases, invasive and alien species); 

• Soil quality (as indicated by cover, depth and fertility 

The methodological approach for forest degradation assessment using remote sensing should focus in one of each key 

concept to explain the impact of remote sensing trough degradation. 
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5.1 THE USE OF VEGETATION INDICES AS NDVI CONCEPT TO ASSESS FOREST DEGRADATION 

Vegetation indices are the quantitative measure of measuring biomass or vegetation vigor. They are usually formed by a 

combination of several spectral bands whose values are added, divided or multiplied in order to yield a single value that 

indicates the amount or vigor of vegetation. A variety of vegetation indices have been developed, with most commonly using 

red and near infrared regions of the spectrum to emphasize the difference between strong absorption of red 

electromagnetic radiation and the strong scatter of near infrared radiation. The simplest form of vegetation index is a ratio 

between near infrared and red reflectance and it is high for healthy living vegetation. Literature survey revealed wide 

disagreement regarding the biomass and vegetation indices relationship. Many studies report a significant positive 

relationship (e.g [21] while some results showed poor relationship [19].The normalized difference index (NDVI) is one of the 

most commonly used vegetation indices in many applications relevant to analysis of biophysical parameters of forests. Over 

the past two decades its utility has been well demonstrated in satellite assessment and monitoring of global vegetation cover 

[3] [43] The strength of NDVI is in its rationing concept which reduces many form of multiplicative noise present in multiple 

bands. However, conclusions about its value vary depending on the use of specific biophysical parameters and characteristics 

of the study area [21] It is computed by the product of the ratio of two electro-magnetic wavelengths (near infrared–

red)/(near infrared+red). Vegetation has high near chlorophyll pigments and the value of NDVI tends to one. In contrast of 

this, clouds, water, snow etc. have a high red reflectance than near-infrared and these features yield negatives NDVI value. 

Rocks and bare soil also have similar reflectance and usually zero value of NDVI. 

The saturation of the relationship between biomass and NDVI is also a well-known problem. This can be explained by the 

fact that as canopy increases, the amount of red light that can be absorbed by leaves reaches a peak while near-infrared 

(NIR) reflectance increases because of multiples scattering with leaves. The imbalance between a slight decrease in the red 

and high NIR reflectance results in a slight change in the NDVI ratio and thus, yield poor relationship with biomass [13] 

Further, [29] Observed that saturation level is also dependent on the tree species, forest types as well as the ground surface 

types. Therefore, a suitable relationship of vegetation indices and biomass is crucial in assessment of biomass in different 

circumstances and a matter of more research work. The usefulness of remote sensing in such work depends on the strength 

of the relationships developed with respect to a particular type of forests and its geographical location. 

5.2 FOREST CANOPY CHANGE AND REMOTE SENSING 

Researchers have found relationships between vegetation properties and remotely sensed variables. In order to 

summarize these diverse experiments, basal area and canopy cover, and the “volume and productivity” variable includes age, 

height, volume, diameter and density. [31] found a significant relationship between green TM band (2) with basal area of 

trees. 

More recent work by Fiorella and [33] found that ratios of near-infrared/red and near-infrared/middle-infrared correlated 

with structural forms. [1] discovered that vegetation productivity is more strongly related to band ratios than individual 

bands. 

[48] analyzed (simulated) TM data, and concluded most information about vegetation was contained in the blue, near-

infrared and middle-infrared. Thermal infrared was used by [37] to map broad forest type classes. Vegetation dieback and 

damage are best mapped by band ratios.   

5.3 COMPARING FOREST INVENTORY AND REMOTE SENSING MEASUREMENT OF FOREST DEGRADATION 

The same forest quantities (e.g., biomass) are estimated differently by ground forest inventory and by remote sensing. 

Forest inventory typically measures tree abundance, diameter, crown width, species, and height [10],[27]. 
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Table4. How Forest Inventory and Remote Sensing Estimate the Forest Identity 

 

 

Remote sensing measures reflected spectra, forest area and the horizontal and vertical structure of forests can be 

measured directly from these reflected spectra. Fieldwork or higher resolution imagery can be used to generate ground-truth 

data to assess the accuracy of these forest area and structure measurements [29]. 

5.4 CLASSIFICATION APPROACH FOR FOREST DEGRADATION ASSESSMENT 

Global forest area is often measured as two classes (forest/non-forest) or binned (that is, categorized) into homogenous 

forest types that does not distinguish tree plantations or disturbed forests ([37], [42]. 

5.5 ESTIMATING FOREST VOLUME USING REMOTE SENSING 

Both the volume and the aboveground biomass (AGB) of forests can be estimated from allometric relationships with 

canopy width, structure, and/or height, the intensity of SAR backscatter, correlations with passive spectra, and various 

fusions of the above [16]. 

5.6 ESTIMATING FOREST BIOMASS USING REMOTE SENSING 

Tree height and/or diameter, because of the unique constraints of plant structure, is positively correlated with tree 

biomass within a species ([27], [37] Using well-established allometric relationships, biomass can be calculated from tree 

diameter, height, and/or wood density [27]. Remote sensing cannot directly measure wood density, but correlative forest 

inventory data can use species-specific or region-specific allometric equations to provide accurate estimates of biomass. 

Forest height can be measured from a variety of remotely sensed data and used to estimate biomass [30], [34], [15] 

Although diameter, height, and wood density are central variables, biomass estimates can be improved by using additional 

forest structure variables (e.g., canopy width, canopy volume) [17], [51]. 

5.7 ESTIMATING FOREST CARBON STOCKS FROM REMOTELY SENSED DATA 

Satellite imaging can tell us much about global carbon stocks, but there are limits to its accuracy. Dry biomass is 

approximately 47–55 percent carbon by weight [23] so aboveground biomass estimates from remote sensing can be simply 

converted into aboveground carbon (AGC) stock estimates [22]. 
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5.8 LANDSCAPES INDICES 

To investigate the relationship between landscape pattern and ecological processes, it is useful to describe these 

structures in quantifiable terms. This explains the development of a series of "landscape metrics" [8],[16],[25]The need to 

use several indices to characterize the spatial structure of a landscape seems logical and many clues are available to 

ecologists for this purpose. These measures are often an indicator of human impact on landscape morphology [25] Since no 

action can be summed up in itself all the complexity of the spatial arrangement of patches, a set of measures should 

generally be done [25],[34]This idea is at the base of the existence of an abundance of indices. 

Landscape ecology is based on the idea that there is a link between spatial ecological pattern and processes. Spatial 

indices or metrics have been developed by community and population ecologists to study this link, using theoretical concepts 

of disturbance, island biogeography, and information theory [6],[34], [39] These indices are commonly related to patch size, 

complexity, diversity, and neighborhood structure. Size-related indices measure patch size characteristics. Complexity-related 

indices measure how complicated patch shapes are. Diversity-related indices measure how diversified patches are. 

Neighborhood-related indices measure the relationship of a patch with its neighbors. Detailed mathematical descriptions of 

these indices are available in [19]. 

6 CONCLUSIONS 

From the preceding three sections of this review, quite a number of conclusions can be made. Measuring forest 

degradation and related forest carbon stock changes is more complicated and less efficient than measuring deforestation 

since the former is based on changes in the structure of the forest that do not imply a change in land use and therefore it is 

not easily detectable through remote sensing. There is not one method to monitor forest degradation. The choice of 

different approaches depends on a number of factors including the type of degradation, available (historical) data, capacities 

and resources and the potentials and limitations of various measurement and monitoring approaches.  

Measuring all carbon stock changes caused by forest degradation within a country at the same level of detail and 

accuracy will likely not be efficient. In particular the considerations of IPCC source category analysis, and the fact that many 

degradation activities are focused on specific areas within the country help to make the monitoring more targeted and 

efficient to capture the most important components with priority. 

To estimate forest degradation, countries need to assess carbon stock changes and the total area undergoing 

degradation, ideally for different types of degradation (i.e. fire, logging, and fuel wood harvesting). The assessment of 

changes in carbon stocks requires consistent ground data while the evaluation of the total area undergoing degradation is 

more reliably measured through remote sensing for the major degradation processes, in particular for developing countries. 

The particular problem of measuring forest degradation is the lack of field based forest data for developing countries. In 

general terms, forest degradation areas can be mapped through direct and indirect methods, the former approach is based 

on direct observations of forest structural changes (i.e. canopy gaps), while the second considers modelling approaches 

based on known drivers of forest degradation. 

The major issue affecting the assessment and reporting of forest degradation emissions is the estimation of its 

uncertainty. Among the REDD+ activities, both forest degradation and deforestation will require high levels of accuracy and 

certainty since they are major contributors of countries´ GHG budgets for forests. While consistent measurements of forest 

carbon stock changes have not been of a high priority in many countries and monitoring programs in the past, this situation is 

changing now and new investments in systematic forest degradation estimates can help reduce uncertainties even for 

historical estimates. However, historical degradation estimates will necessarily come with large uncertainties due to the lack 

of available data to determine their accuracy. 
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