DESIGN OF BRIDGELESS SEPIC CONVERTER FOR PHACO EMULSIFIER PERISTALTIC PUMP CATARACT

Gayathri Chandramohan¹ and Subramanian Venkatanarayanan²

¹Head of the Department, Electrical and Electronics Engineering, Mount Zion Engineering College, Lenavillakku, Pudukkottai, Tamilnadu, India
²Associate Professor, Electrical and Electronics Engineering, Anna University, K.L.N. College of Engineering, Pottapalayam, Sivagangai District, Tamilnadu, India

Copyright © 2016 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: The bridgeless SEPIC converter design is used for the phaco emulsification peristaltic pump of permanent magnet DC motor. This paper focuses the supply to the peristaltic motor using Bridgeless SEPIC having reduced switching and conduction losses with improved power factor, It is designed to work in Discontinuous Conduction Mode (DCM) to achieve the speed control of DC motor by varying the input supply to the armature. This converter is investigated theoretically and the performance comparisons of this proposed converter is verified with MATLAB simulation. The experimental setup of phaco emulsification peristaltic pump is developed.

KEYWORDS: Bridgeless, Conduction, converter, SEPIC, speed, switching.

1 INTRODUCTION

The SEPIC stands for single ended primary inductor converter. It is a one type of DC-DC converter which is used in many other applications like mobile phone battery charger, electronic ballast, telecommunications and DC power supplies etc., In this converter the output voltage is maybe buck or boost or same voltage as that of the supply voltage. The converter have been developed a new ZVS PWM SEPIC topology. it has low switching and conduction losses due to zero voltage switching and synchronous rectifier operation[1]. The SEPIC have been designed to increases the power factor correction in ac system, in order to achieve the high power factor [2]. The SEPIC input current and input voltage have been used to a certain extent, reducing the amount of lower order harmonics and resulting high power factor[3]. A new bridgeless PFC SEPIC converter have been designed for high power factor under universal input voltage condition [3]. A novel PFC topology have been developed by the valley-fill circuit into the DCM SEPIC derived converter, by implementing this topology. The solved the bus capacitor voltage dependent on the output load issue and avoided high voltage stress in light load [4]. Two new single-phase bridgeless rectifiers with low input current distortion and low conduction losses have obtained by implemented SEPIC compressed with CUK PFC converter. The size of inductor was reduced and obtained efficiency of SEPIC converter have been improved [5].Single switch bridgeless SEPIC converter have been developed and gave low switching loss compared to bridgeless double switch converter also efficiency [6].

In this proposed work the bridgeless SEPIC converter is developed for the speed control of PMDC motor. The Bridgeless SEPIC converter is designed for the energy elements of Inductors and capacitors. The values obtained are used in simulation. The conduction and switching losses are verified. The power factor improvement is verified with MATLAB simulink. The speed of the motor is controlled 900RPM to 1500RPM. Since the switching time is reduced and the losses are minimized. This
proposed converter carries full current in the coupling capacitor and hence this capacitor values to be selected to carry the full load current of the PMDC.

2 PHACOEMULSIFICATION

2.1 PRINCIPLE OF PHACO EMULSIFICATION

Phacoemulsification refers to modern cataract surgery in which the eye’s internal lens is emulsified with an ultrasonic hand piece and aspirated from the eye. Aspirated fluids are replaced with irrigation of balanced salt solution, thus maintaining the anterior chamber, as well as cooling the hand piece. Before the phacoemulsification can be performed, one or more incisions are made in the eye to allow the introduction of surgical instruments. The surgeon then removes the anterior face of the capsule that contains the lens inside the eye. Phacoemulsification surgery involves the use of a machine with microprocessor-controlled fluid dynamics. These can be based on peristaltic or a venturi type of pump.

The phaco probe is an ultrasonic handpiece with a titanium or steel needle. The tip of the needle vibrates at ultrasonic frequency to sculpt and emulsify the cataract while the pump aspirates particles through the tip. In some techniques, a second fine steel instrument called a "chopper" is used from a side port to help with chopping the nucleus into smaller pieces. The cataract is usually broken into two or four pieces and each piece is emulsified and aspirated out with suction. The nucleus emulsification makes it easier to aspirate the particles. After removing all hard central lens nucleus with PHACO emulsification, the softer outer lens cortex is removed with suction only.

An irrigation-aspiration probe or a bimanual system is used to aspirate out the remaining peripheral cortical matter, while leaving the posterior capsule intact. As with other cataract extraction procedures, an intraocular lens (IOL) implant, is placed into the remaining lens capsule.

2.2 PRINCIPLE OF PERISTALTIC PUMP

A peristaltic pump is a type of positive displacement pump. It contains fluid within a flexible tube fitted inside a circular pump casing. A number of rollers, shoes, or wipers attached to a rotor compresses the flexible tube. As the rotor turns, the part of the tube under compression closes (or occludes), forcing the fluid through the tube. Additionally, when the tube opens to its natural state after the passing of the cam it draws (restitution) fluid flow into the pump. This process is called peristalsis and is used in phacoemulsifier for cataract surgery. The liquid being pumped never comes into contact with any moving parts because it is totally contained within the re-enforced hose or tube. A rotating shoe or roller passes along the length of the hose or tube creating a total seal between the suction and discharge sides of the pump. As the pump’s rotor turns this sealing pressure moves along the tube or hose forcing product to move away from the pump and into the discharge line. Where the pressure has been released the hose or tube recovers creating a vacuum, which draws the product into the suction side of the pump, the priming mechanism.
Combining these suction and discharge actions results in a self-priming positive displacement pump, the peristaltic pump.

The perfect seal between the two sides of the pump means that there is no product slip, when coupled with the pump’s linear speed-flow characteristic it makes peristaltic pumps ideal for dosing.

Additionally, as the pumped liquid is totally contained within the hose or tube, this makes a peristaltic pump a hygienic pumping solution with zero chance for contamination. This also reduces maintenance time as the hose or tube is the only wearing part.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>External control - input</td>
<td>0 to 20mA, 40 to 20mA or 0 to 12V</td>
</tr>
<tr>
<td>External control - output</td>
<td>4 to 20mA, or 0 to 12V</td>
</tr>
<tr>
<td>Motor running logic</td>
<td>N.O. or N.C. (1A @ 24V)</td>
</tr>
<tr>
<td>Tachometer output</td>
<td>5V, TTL pulse</td>
</tr>
<tr>
<td>Voltage (50Hz)</td>
<td>230V AC</td>
</tr>
<tr>
<td>Motor type</td>
<td>1/10 HP, (75w) PMDC</td>
</tr>
<tr>
<td>Control type</td>
<td>Digital phase-controlled</td>
</tr>
<tr>
<td>Speed resolution (repeatability)</td>
<td>±1rpm @ 4 to 400rpm</td>
</tr>
<tr>
<td>Speed regulation</td>
<td>±0.25% (full scale)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0° to 40°C (32° to 104°F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25° to 65°C (-25° to +149°F)</td>
</tr>
<tr>
<td>Controller dimensions (L x W x H)</td>
<td>31.7 x 27.9 x 15.2cm (12.5 x 11 x 6 in.)</td>
</tr>
</tbody>
</table>

3 SEPIC CONVERTER

The SEPIC output is controlled by varying duty cycle to the power switches like MOSFET, IGBT, GTO etc. It is also similar to traditional buck-boost converter, it has one additional advantage the output is non-inverted (the output same polarity as the input). Using series capacitor the couple of energy from input to output and being capable of true shutdown. When the switch is turned off the capacitor voltage false to 0V. SEPIC converter is operated in two mode, one continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The DCM mode operation means the inductor current falls to zero.
A SEPIC said be in continuous-conduction mode means if the current through the inductor never falls to zero. During SEPIC steady state operation while switch S1 is turned on current IL1 increases and the current IL2 current increase in negative direction. The energy to increase the current IL1 comes from the input supply since S1 is a short while closed and the instantaneous voltage VC1 approximately VIN, the voltage VL2 is approximately –VIN. Therefore, the capacitor C1 supplies the energy to increase the magnitude of the current in IL2 and thus increase the energy stored in L2.

When the switch S1 is turned off, the current IC1 becomes the same as the current IL1, since inductors do not allow instantaneous change in current. The current IL2 will continue in the negative direction, in fact it never reverses.
direction. It can be seen from the fig.3 that a negative IL2 will add to the current IL1 to increase the current delivered to the load.

4 PERMANENT MAGNET DC MOTOR

Permanent magnet DC motor is similar to an ordinary dc shunt motor except that its field is provided by permanent magnet instead of salient pole wound structure. There are three types of permanent magnet used for such motors, (i.e.) Alnico, ferrite and rare-earth magnets. These materials has high residual flux density and high coercivity, The armature consist of slots to the accommodated armature winding. In this type of motor field speed control is not possible but armature speed control is only possible in order to vary the input supply to the armature winding the motor speed is varying as much we desired value. In this type of motor below speed control only possible because of field having permanent magnet, suppose we increase the voltage above rated voltage means the motor insulation will become into failure and motor windings will be short circuited.
THE CHARACTERISTICS OF PMDC MOTOR IS GIVEN BELOW

![Characteristics of PMDC motor](image)

Fig. 6. Characteristics of PMDC motor

5 **BRIDGELESS SEPIC CONVERTER**

A conventional AC-DC SEPIC converter had a bridge circuit in input because this circuit converts ac-dc. The converting process was done by means of diodes. During positive half cycle couple of the diode was conducting and negative half cycle another couple of the diode was conducting due to this conduction loss also increases and also presence of power switches the switching loss is increase. It is an unavoidable one but conduction loss is avoidable one. A bridgeless SEPIC converter gives a low conduction loss and switching loss during switch turn on and turn off condition.

The bridgeless circuit also used to improve power factor in SEPIC converter during conversion of ac-dc. Here three identical inductor is used to reduce the ripple current and coupling capacitor is used to store the input voltage and boost voltage both capacitors are identical so that the voltage ripple also reduced. During positive half cycle all components will conduct except DS1, S2, C2, L3 and D02. During negative half cycle all components will conduct except DS2, S1, C1, L2 and DO1. Thus only eight components will be conducted at each half cycle compared to eleven in bridgeless SEPIC converter. In this circuit PID controller is used to vary the speed of the PMDC motor by varying pulse width to the SEPIC converter, It is obtained the various voltage to the motor.
Fig. 7. Bridgeless SEPIC converter circuit diagram

Fig. 8. During positive half cycle, switch Q₁ turn on and Q₂ turn off condition
Fig. 9. During negative half cycle, switch Q₂ turn on and Q₁ turn off condition.

6 CIRCUIT OPERATION

The operation of the converter will be explained assuming that the three inductors are working in DCM. Operating the SEPIC in DCM offers advantages over continuous-current mode (CCM) operation. Such as a near-unity power factor can be achieved naturally and without sensing the input line current. Also in DCM, both Q₁ and Q₂ are turned on at zero current. While the diode DS₁ are turned off at zero current. Thus, the loss due to switching losses and the reverse recovery of the rectifier are considerably reduced.

Fig. 10. During positive half cycle, switch Q₁ turn on and Q₂ turn off condition.

6.1 MODE 1

During the positive half-line cycle, the first dc-dc SEPIC circuit, L₁-Q₁-C₁-L₃-Do, is active through diode Dp, which connects the input ac source to the output ground. when the switch Q₁ is turned on, diode Dp is forward biased by the sum inductor currents iL₁ and iL₂. As a result, diode DN is reversed biased by the input voltage. The output diode is reversed biased by the reverse voltage (Vac + Vo). In this stage, the three-inductor currents increase linearly at a rate proportional to the input voltage Vac.

6.2 MODE 2

During the negative half-line cycle, the second dc-dc SEPIC circuit, L₂-Q₂-C₂-L₃-Do, is active through diode DN, which connects the input ac source to the output ground.
During positive half cycle, switch Q₁ turn on and Q₂ turn off condition

At the instant, switch Q₁ is turned-off, diode Do is turned-on simultaneously providing a path for the three inductor currents. Diode Dp remains conducting to provide a path for iL₁ and iL₂. In this stage, the three inductor currents decrease linearly at a rate proportional to the output voltage, Vo.

6.3 Mode 3

In this stage, both Q₁ and Do are in their off-state. Diode Dp provides a path for iL₃. The three inductors behave as current sources, which keep the currents constant. Hence, the voltage across the three inductors is zero. Capacitor C₁ is charging up by iL₁, while C₂ is discharged by iL₂.

Fig.11. shows the main theoretical waveforms during one switching period Tₛ. It should be mentioned here that if the two active switches Q₁ and Q₂ are implemented as standard MOSFET, then the body diode of Q₂ will conduct during the first stage and the circuit will not function properly. In other words, there are reverse voltages applied to the active switches, so that the switches must have reverse blocking capability. Therefore, unidirectional current conducting device must be implemented for Q₁ and Q₂. In this case, turning ON or OFF Q₂ during the first stage will not change the circuit operation mode. Accordingly, both of the switches, Q₁ and Q₂, can be driven by the same control signal, which helps in reducing the cost and complexity of the driving circuit.

The rate of increase of the three inductor currents are given by

\[
\frac{dL_n}{dt} = \frac{V_{ac}}{L_n}, \quad n = 0,1,2,3
\]

(1)

The peak switch current Iₜ₁₋ₚₖ is given by

\[
I_{Q₁,pk} = \frac{V_m}{L_e} D_1 T_s
\]

(2)

Where,

\[
\frac{1}{L_e} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}
\]

(3)

And D₁ is the switch duty cycle. This intervals ends when Q₁ is turned off, initiating the next subinterval.

7 Design Procedure For Bridgeless Sepic

A simplified design procedure is presented in this section to determine the components values of the proposed converter. The bridgeless SEPIC converter is calculated with the following power stages specification.
Input voltage \(V_{ac} = 12 \) Vrms at 50Hz

Output voltage = \(V_o = 15 \) Vdc

Output power = 75 Watts

Switching frequency = 330KHz

Maximum input ripple current \(\Delta i_{L1} = 20\% \) of fundamental current

Output voltage ripple \(\Delta v_o = \pm 1\% \) of \(V_o \)

The voltage conversion ratio \(M \) is

\[
M = \frac{15}{12 \times \sqrt{2}} = 0.88
\]

The value of \(K_{e-crit} \) is

\[
K_e < K_{e-crit} = \frac{1}{2(M + 1)^2} = 0.147
\]

For values of \(K_e > K_{e-crit} \), the converter operates in CCM; otherwise, the converter operates in DCM.

Inductance \(L_e \) value is

\[
L_e = \frac{K_e R_L}{2f_s} = 6.681 \mu H
\]

Inductances \(L_1, L_2 \) and \(L_3 \) value can be determined as follows,

\[
L_1 = \frac{V_m D_1}{f_s \Delta i_{L1}} = 11 mH
\]

\[
L_2 = L_3 = \frac{2L_1 L_2}{L_1 - L_e} = 100 mH
\]

The required output capacitance to maintain peak-peak output voltage ripple of 2% of \(V_o \) can be calculated as follows,

\[
\Delta v_o = \frac{V_o}{2C_o} \left[\frac{1}{\pi} \left(1 + \frac{1}{2} - \frac{1}{R_L} \right) \right]
\]

And \(C_{1}, C_{2} = 1 mF \)

The coupling capacitor \(C_1 \) must be chosen such that its voltage follows the shape of the input ac line voltage wave form with the lowest ripple as possible, \(C_1 \) should not cause low-frequency oscillations with inductors \(L_1, L_2 \) and \(L_3 \), based on three constraints, the value of \(C_1 = C_2 = 10 mF \) is chosen for this particular design.

The inductor ripple current is,

\[
\bar{i}_{L1} = \frac{D_1^2 T_e v_{ac}}{2L_1} \left(1 + \frac{2v_{ac}}{v_o} \right) + i_x
\]

\[
\bar{i}_{L1} = \frac{D_1^2 T_e v_{ac}}{2} \left[\frac{2v_{ac}}{v_o} \left(\frac{1}{L_2} - \frac{1}{L_2} \right) - \frac{1}{L_2} \right] - i_y
\]

The current \(i_x \) simply found by following expression,

\[
i_x = \frac{v_{ac}}{R_L} \left[1 - \frac{L_e}{L_1} \left(1 + \frac{2v_{ac}}{v_o} \right) \right]
\]

\(i_{L1} \) can be represented by,

\[
i_{L1} = C_1 \omega v_m \cos(\omega t)
\]
8 SIMULATION

A simulation performed at bridgeless SEPIC converter inductors and capacitors values are taken above mentioned value, Supply voltage and switching frequency are also specified value. The bridgeless SEPIC converter simulated waveforms are shown in fig.

Simulated output of Bridgeless SEPIC Converter

![Simulated output of Bridgeless SEPIC Converter](image)

Fig. 13. Inductors L₁, L₃ and L₂ current waveforms
Fig. 14. Capacitors C_1 and C_2 voltage waveforms

Fig. 15. Inductors L_1 and L_2 voltage waveforms

Fig. 16. Input voltage and current waveforms
Fig. 17. Output voltage and current waveforms

Table 2. Motor specifications

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>%EFFICIENCY</th>
<th>Power factor</th>
<th>VOLTAGE (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOLTAGE (volts)</td>
<td>CURRENT (A)</td>
<td>POWER (watts)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12.0</td>
<td>2.60</td>
<td>31.20</td>
<td>14.23</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12.5</td>
<td>2.55</td>
<td>31.87</td>
<td>14.23</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13.0</td>
<td>2.50</td>
<td>32.50</td>
<td>14.23</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13.5</td>
<td>2.50</td>
<td>33.75</td>
<td>14.24</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14.0</td>
<td>2.50</td>
<td>35.00</td>
<td>14.24</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14.5</td>
<td>2.45</td>
<td>35.50</td>
<td>14.24</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15.0</td>
<td>2.40</td>
<td>36.00</td>
<td>14.24</td>
<td></td>
</tr>
</tbody>
</table>

Where,
- Ra-armature resistance in Ω
- La-armature inductance in H
- Torque constant (N.m/A)
- J-total inertia in Kg.m^2
- Bm-viscous friction coefficient in (N.m.s)
- Tf-coulomb friction torque in (N.m)

9 Conclusion

The bridgeless SEPIC converter designed and used for the phaco emulsification on peristaltic pump DC motor. This paper Bridgeless SEPIC topology is used and having reduced switching and conduction losses with improved power factor, It is designed to work in Discontinuous Conduction Mode (DCM) to achieve the speed control of DC motor by varying the input
supply to the armature. This converter is developed in MATLAB simulink and Performance are verified. The efficiency of this converter is obtained about 82.2%. The further improvement can be done in DSP controllers.

REFERENCES

[4] Hongbo Ma, Student Member, IEEE, Jih-Sheng Lai, Fellow, IEEE, Quanyuan Feng, Senior Member, IEEE, Wensong Yu, Member, IEEE, Cong Zheng, Student Member, IEEE, and Zheng Zhao, Student Member, “A Novel Valley-Fill SEPIC-derived Power Supply”, ieee transactions on power electronics, vol. 27, no. 6, june 2012.

[5] Ahmad J. Sabzali, Esam H. Ismail, and Mustafa A. Al-Saffar Member, IEEE, Senior Member, IEEE, Member, IEEE Abbas A. Fardoun Senior Member, IEEE.
