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ABSTRACT: In this paper, we consider the de Sitter algebra and we realize the Kählerian structure by using the fact that the 

dual of a Lie algebra of a Lie group has a natural Poisson structure and also the fact that a non-degenerate Killing form on a 

Lie algebra induces a metric on its dual. 
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1 INTRODUCTION 

The de Sitter space V+ with positive curvature k is described by the hyperboloid 
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where  u1 , u2 and u3 are global coordinates such that : 
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−1
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The de Sitter group dS+ is the group of orthogonal symetries of V+ , its acts transitively on the spaces V+ as follows u’i = gi
j
 

uj. dS+ stand for the Lie algebra of Lie group dS+ . We assume that dS+ is generated by the basis (P, K, H) where P is the 

infinitesimal generator of spatial translation, K is the infinitesimal generator of boost and H is the infinitesimal generator of 

time translation. We associate to P, K and H respectively the parameters of length (x), velocity (v) and time (t). 

For the de Sitter Lie algebra dS+ endowed with the basis (P, K, H), the nontrivial Lie brackets are : 

                                         [P, H] = ω 
2
 K,   [K, P] =	 ��� H,  [K, H] = P.                                                    (2) 

For more details about the de Sitter group and its Lie algebra, see [2] and [5]. 

We name dS+* the dual of the Lie algebra dS+ and we recall that in the dual Lie algebra, the dual of P, K and H are linear 

momenta (p), static momenta (k) and energy (E). 
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2 POISSON  STRUCTURE ASSOCIATED TO DE SITTER LIE ALGEBRA 

The derivative of the coadjoint action of the de Sitter group on dS+* designed by ad∗, permits to define the Kirillov form 

on dS+*, 

<ad
*

X(α), Y>   = <α, [X, Y]> 

                                                                                           = Kij (α)X 
i 
Y 

j
                                              (3) 

  

where  α(p, k, E) ∈ dS+*, X, Y ∈ dS+ and <,> is a pairing between dS+ and dS+*. 

In the basis (P, K, H) of dS+, the Kirillov form is given by the matrix 

Kij (α) = −αk Cij
k
 

where   Cij
k
  are structure constants.  Explicitly, the matrix of the Kirillov form in this basis of dS+ is 

                       Kij (p, k, E) =� 0 	��� 
 −⍵
���� 
 0 −�⍵
� � 0 � .                                                         (4) 

For any f, g ∈ ��(dS+ ,	ℝ ), the Poisson bracket is given by 

 ��, �� = Kij (α)	 �����	 ����� 
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%
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             =	 ��� 
 ��		�" ��	�! 	+	⍵
� ��		�# ���! −	 ��� 
 ���! ��		�" + 	� ��		�# ��		�" − ⍵
� ���! 		��		�# − 	� ��		�" ��		�#                               (5) 

 This Poisson bracket provides Poisson structure associated to the de Sitter group. 

 (dS+*, {, }), the dual of dS+ endowed with the Poisson bracket {,}, is a Poisson manifold. 

3 RIEMANN STRUCTURE ASSOCIATED TO DE SITTER LIE ALGEBRA 

We recall that the adjoint representation of dS+ is defined by ,- ∶ 	/01 	→ 	
3-4/015, 6	 → 	,-6	,	
for any  Y ∈ dS+ , ,-7 : dS+ → dS+ , Y → ,-7(Y ) = [X, Y]. 

In the basis (P, K, H) of dS+, the matrix culumns of the endomorphism ,-!8	1"91#:	 of dS+ are provided by ,-!8	1"91#:	4;	5 	= 	�. ,-8 	4;	5 	+ 	�. ,-9 	4;	5 	+ 	
. ,-:	4;	5	
                                                                        = 	�[;, ;] 	+ 	�[?, ;] 	+ 	
[@, ;]	

                                                                                      =	 ��� �@ − 
⍵
? 

                                                    ,-!8	1"91#: 	4?	5 = 	− ��� �@ − 
; 																																																					,-!8	1"91#:	4@5 = �⍵
? + �;.                                                                         (6) 

We get the matrix of	,-!8	1"91#:	 ∈ 
3-4/015 

                                                          A 0 −
 �−
⍵
 0 �⍵
��� � − ��� � 0 B .                                                                              (7) 
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The Killing form R is defined as follows  C ∶ 	/01 	× 	/01 	→ 	ℝ 																																																							46, E	5 	→ 	C46, E	5 	= 	F	G4,-7 		 · 	,-I5	                                                        (8)	
The Killing form defines a metric on the de Sitter Lie algebra dS+. Since the Killing form is non-degenerate, it defines also a 

metric on dS+. 

From (8), for a fixed basis (6J) of dS+ , one has CJK 	= 	C46J 	, 6K5																																																																																																							= 	F	G4,-7� · 	,-7�5                                               (9)	
and the Riemann bracket on  dS+*  can be defined for any f, g ∈ dS+*  by  																																																																							 																																																																											4�, �5 = CJK(α)	 �����	 �����                                                                     (10) 

Consider now the matrix obtained in (7), for any 	6	 = 	�;	 + 	�?	 + 	
@ 

6’	 = ;’	;	 + 	�’	?	 + 	
	‘@	∈ dS+,        												C46, E	5 = FG A 0 −
 �−
⍵
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��� � − ��� � 0 B	A 0 −
′ �′−
′⍵
 0 �′⍵
��� �′ − ��� �′ 0 B 

                                                                                                    = -2⍵
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�� ��O −	
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                                                                                                      =	4�		�	
5%
'	
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(

*Q�′�′
′R													(11) 

The inverse of the matrix CJK  appeared in the relation (11) is 

																																																																														CJK =
%
&'

	��
⍵� 0 00 ��
 00 0 	�
⍵�(
)*                                                                     (12) 

and allows us to defined the Riemann bracket on dS+ 																																																															4�, �5 = CJK(α)	 �����	 ����� 
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 ��		�" ���" −	 �
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  for any f, g ∈ dS+ . 

 (dS+*, (,)), the dual of dS+ endowed with the Riemann bracket (, ), is a Riemann manifold, [4]. 

4 KAHLER STRUCTURE ASSOCIATED TO DE SITTER GROUP 

The Poisson bracket {,} and the Riemann bracket (,) given respectively in (5) and (13) provide the hermitian metric, 

denoted by	〈, 〉 , and called Kahler bracket, on dS+*. 

 For any f, g ∈ dS+*,  
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 																																																																	〈�, �〉 = 4�, �5 + U ��, ��																																																							4145     

With U	 ∈ 	ℂ such that U
 = −1, [3]. The Kahler bracket defines a Kahlerian structure on the dual of the de Sitter algebra. 

(dS+*, 〈, 〉), the dual of dS+ endowed with the Kahler bracket	〈, 〉,  is a Kahler manifold. 

5 CONCLUSION 

The Kähler structure plays an important role in the geometrical description of Schrödinger quantum mechanics. By the 

way of the Poisson bracket and the Riemann bracket, we obtain the Kähler bracket. In this paper, we want to make clear the 

steps leading to obtain the Kähler structure from a Lie group.   
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