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ABSTRACT: In this paper, we present a new approach Pulse Width Modulation, (PWM, for short), to determine the optimal switching 

angles by Selective Harmonic Elimination of a cascade multilevel inverters. Based on mean voltage values, we address a formula that 
relates inverters switching angles with voltages in three phase multilevel inverters. After, using inverse generalized technique, we 
determine such angles expression depending on mean voltages values. In view to eliminate harmonics, we consider these calculated 
switching angles in the resulting system of nonlinear equations obtained from Fourier series decomposition of the output of three phase 
and single phase voltage. Therefore, with respect to different values of the modulation rate r, applying Newton algorithm to solve the 
optimization problem, we obtain for five level inverters, optimal switching angles that eliminate harmonics of rank 3 and 5 for single 
phase and three phase, respectively. 

KEYWORDS: Optimization, SHE-PWM, Multilevel Inverters, Newton-Raphson algorithm. 

1 INTRODUCTION 

Multilevel inverters constitute an effective and practical solution for increasing power and reducing harmonics of ac waveforms. The 
main advantages of multilevel PWM inverters are: firstly, the fac that the series connection allows high voltage without increasing voltage 
stress on switches, secondly, Multilevel waveforms reduce the dv/dt at the output of an inverter and thirdly, at the same switching 
frequency, a multilevel inverter can achieve lower harmonic distortion due to more levels of the output waveform in comparison to a 
two level inverter [4]. 

To provide stepped sinusoidal waveforms with low harmonic content with reduced distortion. Improving the inverter performance 
means improving the quality of the output voltage. For this purpose a set of transcendental equations known as selective harmonic 
elimination equation is used for eliminating or reducing magnitude of desired harmonics. Transcendental equations known as selective 
harmonic elimination equation is used for eliminating or reducing magnitude of desired harmonics. The required switching angles can 
be computed by solving the selective harmonic equations by using Newton-Raphson technique [6]. 

The Stepped Selective Harmonic Elimination Pulse Width Modulation (SSHEPWM) technique is widely used in recent years for 
eliminating preselected lower order harmonics with controlling the fundamental voltage component for multilevel inverter. The main 
difficulty associated with this technique is how to calculate the switching angles for a wide range of the modulation index (r). Solution of 
the problem relies on iteration methods or optimization techniques are suffering from large computational time, dependent on 
equations roots initial values and limited range of r have practical switching angles solutions [5]. 

In [1], authors present a selective harmonic elimination pulse-width modulation (SHE-PWM) method for cascaded H-bridge 
multilevel inverters. The concept of volt–second area balancing is applied to estimate the voltage ratings of the DC sources, which 
provides different voltage ratings of each dc source. The control of output voltage is achieved by varying switching notch created at the 
center of each level. This method calculates switching angles in real time easily owing to the usage of univariate equations. A comparison 
study shows that the proposed method eliminates more harmonics compared with the conventional SHE-PWM methods. Simulation 
and experimental studies are conducted to validate the performance of the proposed SHE-PWM method. 

A new application of Selected Harmonic Elimination Pulse Width Modulation Technique (SHE-PWM) for multilevel inverters is 
discussed in [2]. The switching angles are calculated using constrained optimization technique. With these switching angles both the 
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fundamental harmonic can be controlled and the selected harmonics can be eliminated. Using these calculated switching angles, a set 
of equations is formed which calculates the switching angles with respect to the modulation index. Using that technique three-phase 
voltage has been obtained from a five-level cascade inverter. 

In [3], authors propose a new approach to the Pulse Width Modulation strategies of multilevel Voltage Source Inverters. In the study, 
the modelling is focused on a flying capacitor three-level topology. This mathematical approach is based on the concepts of pseudo 
inverse and generalized inverse. According to authors this study allows recovering classical Pulse Width Modulation (PWM) solutions. It 
also offers a new investigative tool to explore the degree of freedom provided by the duty cycle solution set. In [5], authors propose a 
novel generalized empirical formula for calculating the initial values of the switching angles at zero r in the case of the SSHEPWM 
technique based on the Newton Raphson method. The proposed formula guarantees solution set at a low computational time for the 
complete range of the modulation rate r. Theoretical, simulation and experimental results validated the proposed algorithm. A totally 
different approach based on equal area criteria and harmonics injection in the modulation waveform is fully studied in [7]. The results of 
a case study with maximum five switching angles show that the proposed method can be used with excellent harmonics elimination 
performance for the modulation index range from 0.2 to 0.9. 

In this paper, based on mean voltage values, we address a formula that relates inverters switching angles with voltages in three phase 
multilevel inverters. After, using inverse generalized technique used in [3] to define a new approach of the carrier based PWM dedicated 
to cascade multilevel inverter structure, we determine such angles expression in function of mean voltages values. In view to eliminate 
harmonics, we consider these calculated switching angles in the resulting system of nonlinear equations obtained from Fourier series 
decomposition of the output of three phase en single phase voltage. After, we consider, the one-dimensional optimization problem such 
that applying the first order necessary optimality condition, we retrieve the same system of nonlinear equations. 

Therefore, with respect to different values of the modulation rate r, applying Newton algorithm to solve the one-dimensional 
optimization problem, we obtain for five level inverters, results reported in Table 1 for single phase and Table 2 for three phase voltage. 

The paper is organized as follows. In Section 2, consider multilevel inverters with uniform pitch, we determine the expression of 
inverters voltage at the terminals of switching angles. In Section 3, we briefly recall generalized inverse method and its application w.r.t 
voltages expression according to switching angles. Section 4 is devoted to the problem that consists to eliminate output voltage 
undesirable harmonic. In this part, to eliminate harmonics, we take into account the expression of switching angles in function to voltage 
values. On the other hand, as the harmonic reducing problem is transformed into an optimization problem, we present results obtained 
and reported in Tables 1 and 2 by applying Newton algorithm to solve the optimization problem. 

2 MATHEMATICAL MODEL 

A three-phase multilevel inverter is made up of three phases which are fixed to a three-phase load, (see Fig 1 below) 

 

Fig. 1. Example of a three phase multilevel inverter 
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The output voltage of each phase takes several values over a switching period. Fig 2 shows the shape of the voltage 𝑉𝑎𝑜  of the phase 
”𝑎” of the multilevel inverter. The voltage 𝑉𝑎𝑜  presents a double symmetry with respect to the quarter (𝜋/4) and to the half-
period (𝜋/2). So, the study will only be limited considering the quarter of period. 

• 𝑉1, 𝑉2. . . 𝑉𝑘 correspond to the possible levels of the voltage 𝑉𝑎𝑜; 

• 𝛽1, 𝛽2, … , 𝛽𝑘 correspond to the instants of change of the voltage levels 𝑉𝑎𝑜 ; 

• 𝑘 is the number of commutations for quarter of period, 𝑘 =  (𝑁 − 1) 2⁄ , where 𝑁 is an odd number which 
represents the level of the inverter; 

• 𝑉𝑎𝑜, 𝑉𝑏𝑜 and 𝑉𝑐𝑜  are the phase voltages {𝑎, 𝑏, 𝑐}; 

• 𝑉𝑎𝑏, 𝑉𝑏𝑐  and 𝑉𝑐𝑎  are the phase-to-phase voltages (between phases {𝑎, 𝑏, 𝑐} respectively); 

• 𝑉𝑎𝑛, 𝑉𝑏𝑛 and 𝑉𝑐𝑛 are the voltages at the terminals of the load {z1, z2, z3}. The load will be considered balanced, i.e, 
𝑉𝑎𝑛  +  𝑉𝑏𝑛  +  𝑉𝑐𝑛 =  0. 

 

Fig. 2. Phase "a" of a multilevel output signal 

Consider a multilevel inverter with uniform pitch, i.e, the voltage difference between two consecutive levels is constant  
(𝑉2 − 𝑉1 = 𝑉𝑘 − 𝑉𝑘−1  =  ∆𝑉). The mean value of 𝑉𝑎𝑜  denoted < 𝑉𝑎𝑜 > is given by: 

< 𝑉𝑎𝑜 >=
1

𝛽𝑘
∫ 𝑣𝑎𝑜  (𝛽) 𝑑𝛽
𝛽𝑘

0

 

Subsequently, we will adopt the writing 𝑉𝑎𝑜 as the mean value of the voltage. 

𝑉𝑘 − 𝑉𝑘−1  =  ∆𝑉, the mean value becomes: 

𝑉𝑎𝑜 =< 𝑉𝑎𝑜 >=
∆𝑉

𝛽𝑘
 (𝛽1 + 𝛽2 +⋯+ 𝛽𝑘−1) 

(Because 𝑉𝑘 =  0) 

We deduce the matrix form of the voltage 𝑉𝑎𝑜  

𝑉𝑎𝑜 =
∆𝑉

𝛽𝑘
[1 1… 1] [𝛽1 + 𝛽2 +⋯+ 𝛽𝑘−1] 

𝑇 

Let us set 𝐿 =  [1 1. . . 1]. 𝐿 is a vector of dimension k. 

As we deal with three phase inverters, we deduce the mean values of voltages of the phases B and C. 

𝑉𝑡 is the mean value vector of the voltage of phases {𝑎, 𝑏, 𝑐} 
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𝑉𝑡  =   [𝑉𝑎𝑜, 𝑉𝑏𝑜, 𝑉𝑐𝑜] 
𝑻 

𝑉𝑡 =
∆𝑉

𝛽𝑘
[

𝐿 0 … . . 0
 0… . 0 𝐿 0… . 0
0… . 0 𝐿

] 𝛽 

Using the Kronecker product, we get: 

𝑉𝑡 =
∆𝑉

𝛽𝑘
(𝐼3⊗ 𝐿)𝛽 (1) 

𝑰𝟑 is the identity matrix of dimension 3. 𝛽 Is a row vector of dimension 3𝑘 such that: 

β = [β1
a β2

a…βk−1
a β1

b β2
b… . βk−1

b β1
c β2

c… . βk−1
c]
T

 

By introducing the point n, the compound voltages are given by the following relations: 

Vab =  Van −  Vbn; Vbc =  Vbn −  Vcn and Vca =  Vcn −  Van 

Let us express the difference 𝑉𝑎𝑏 − 𝑉𝑐𝑎 from the previous relations; 

Vab −  Vca =  (Van −  Vbn)  −  (Vcn −  Van)  =  3Van 

So the voltage 𝑉𝒂𝒏 is given by: 

𝑉an =  
 (Vab −  Vca) 

3
 

By introducing the point o, the compound Voltages are given by the following relations: 

𝑉𝒂𝒃 =  𝑉𝒂𝒐 −  𝑉𝒃𝒐;  𝑉𝒃𝒄 =  𝑉𝒃𝒐 −  𝑉𝒄𝒐 and 𝑉𝒄𝒂 =  𝑉𝒄𝒐 −  𝑉𝒂𝑜 

By replacing 𝑉𝒂𝒃 and 𝑉𝒂𝒄 by their previous expressions we get: 

𝑉𝒂𝒏 =  
1

3
 [2𝑉𝒂𝒐 −  𝑉𝒃𝒐 −  𝑉𝒄𝒐] 

In a similar way, we determine the other voltages: 

𝑉𝒃𝒏 =  
1

3
 [−𝑉𝒂𝒐 + 2 𝑉𝒃𝒐 −  𝑉𝒄𝒐] 

𝑉𝒄𝒏 =  
1

3
 [−𝑉𝒂𝒐 −  𝑉𝒃𝒐 + 2 𝑉𝒄𝒐] 

[
𝑉𝒂𝒏
𝑉𝒃𝒏
𝑉𝒄𝒏

] =
1

3
[
2 −1 −1
−1 2 −1
−1 −1 2

] [
𝑉𝒂𝒐
𝑉𝒃𝒐
𝑉𝒄𝒐

] (2) 

By setting: 

𝑉1 =   [𝑉𝒂𝒏 𝑉𝒃𝒏 𝑉𝒄𝒏] 𝑇 

𝑀 = [
2 −1 −1
−1 2 −1
−1 −1 2

] 
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Equation (2) becomes: 

𝑉1 =
1

3
 𝑀 𝑉𝑡  (3) 

Applying the expression of V from equation (1) to equation (3) we get: 

V1 =
1

3
 
∆V

βk
 M(I3⊗L)β (4) 

The matrix M is not invertible, we are going to exploit the characteristic of the load which is balanced.  

The relation 𝑉𝑐𝑛 =  −𝑉𝑎𝑛 −  𝑉𝑏𝑛 allows us to consider a new matrix 

𝐹 = [
2 −1 −1
−1 2 −1

] 

and a new vector 𝑉2  =  [𝑉𝒂𝒏 𝑉𝒃𝒏] 
𝑇 . F is a reduced matrix of M (see [3]). 

Finally, the general model relating the voltages at the terminals of the load and the switching angles three-phase inverter is given by: 

𝑉2 = 
∆𝑉

3𝛽𝑘
 (𝐹 ⊗ 𝐿)𝛽 (5) 

Subsequently, we will determine the expression of the set of solutions of the linear system by using the generalized inverse method. 

3 APPLICATION OF THE GENERALIZED INVERSE METHOD TO THE INVERTER MODEL 

Formular (5) is a system of compatible linear equations. However, the theories of inverse matrices do not allow to solve this system, 
because the matrix F is not invertible. In fact, to determine the angles we are going to resort to the notion of generalized inverse method. 
The idea consists in expressing the switching angles as a function of the voltages of 𝑉𝑎𝑛, 𝑉𝑏𝑛 and 𝑉𝑐𝑛. Generalizing inverse method comes 
from the need to solve the systems of type: 𝐴𝑥 =  𝑏 (6) 

Where A is a matrix, not necessarily square, with m rows and n columns, 𝑥 is an unknown vector, b is a m dimensional vector that 
components are the RHS of the system. Such a system can have zero, one, or an infinite number of exact solutions. The system 𝐴𝑥 =  𝑏 
admits at least one solution if and only if: 𝑅𝑎𝑛𝑘 [𝐴]  =  𝑅𝑎𝑛𝑘 [𝐴 𝑏] (𝑅𝑎𝑛𝑘 [𝐴] is the rank of the matrix A, it means the maximum 
number of the matrix A rows or columns that are linearly independent). 

Moreover, if 𝑅𝑎𝑛𝑘 [𝐴]  =  𝑛, then the system admits a unique solution. Otherwise, the system admits an infinity of solutions. The 
solution of the linear equation system (6) is defined in the form: 

x =  𝐴 [𝟏] b + (Im  −  𝐴
 [𝟏] A) z (7) 

• 𝑧 is an arbitrary vector which allows to explore the set of solutions. 

• A [1] is a generalized inverse of 𝐴. 

• 𝐼𝑚  is the identity matrix to m. dimension 

• 𝐴† is a particular generalized inverse (pseudo-inverse of A), the set of solutions (7) can be generated as follows: 

• 𝑥 =  𝐴†𝑏 +  (𝐼𝑚 − 𝐴†𝐴) 𝑧 (8) 

The equation contains two terms: 

• basic solution: 𝐴†𝑏 

• A free solution: (𝐼𝑚 −  𝐴†𝐴) 𝑧. (For more details regarding the method, see [8], [9]). The solution of the system 
of linear equation (5) is then defined in the form: 

𝛽 =  𝑘.  (𝐹 ⊗ 𝐿) †. 𝑉2 +  [𝐼𝑛 −   (𝐹 ⊗ 𝐿) † (𝐹 ⊗ 𝐿)] 𝜆 
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Using the product property of Kronecker (𝐴 ⊗ 𝐵)†  =  𝐴†⊗𝐵†, we get a final relation of the angles: 

𝛽 =  𝑘. (𝐹†⊗𝐿†). 𝑉2 + [𝐼𝑛 − (𝐹†⊗𝐿†)(𝐹 ⊗ 𝐿)]𝜆 (9) 

With 

𝑘 =
3𝛽𝑘

∆𝑉
 and 𝐹† =

1

3
[
1 0
0 1
−1 −1

] 

We set =  𝐹 ⊗  𝐿, which gives 𝐷† = 𝐹†⊗𝐿† 

𝐼𝑛 is the identity matrix of dimension 
3 (𝑛−1) 

2
; 𝜆 is an arbitrary vector of the same dimension as 𝐼𝑛. 

Equation (9) becomes: 

𝛽 =  𝑘. 𝐷†. 𝑉2 + [𝐼𝑛 − 𝐷†𝐷]𝜆 (10) 

Equation (10) gives us an expression for the switching angles. 

4 COMPUTATION OF ANGLES AND EXPERIMENT RESULTS 

Selective Harmonics Elimination strategy is based on the development in Fourier series of the voltage 𝑉𝑎𝑜. This voltage admits a 
symmetry with respect to half and a quarter of the period. As a result, it is well known that even harmonic components in cosines and in 
sines are zero. The Fourier series decomposition of this voltage is given by: 

𝑉𝐴𝑀(𝛼) = ∑𝑎𝑛sin  (𝑛𝛼) 

+∞

𝑛=1

 

𝑎𝑛 =
4

𝜋
∫𝑉𝐴𝑀  (𝛼) 

𝜋
2

0

sin  (𝑛𝛼) 𝑑𝛼 

After integration, and by means of some calculations, we end up with an algebraic system of nonlinear equations as follows: 

{
 
 

 
 

𝑐𝑜𝑠 (𝛽1)  +  𝑐𝑜𝑠 (𝛽2) +. . . + 𝑐𝑜𝑠 (𝛽𝑘−1)  =  
𝜋

4𝐸
 ℎ1

𝑐𝑜𝑠 (5𝛽1)  +  𝑐𝑜𝑠 (5𝛽2) +. . . + 𝑐𝑜𝑠 (5𝛽𝑘−1)  =  
5𝜋

4𝐸
 ℎ2

.

.

𝑐𝑜𝑠(𝑛𝛽1) +  𝑐𝑜𝑠 (𝑛𝛽2) +. . . + 𝑐𝑜𝑠 (𝑛𝛽𝑘−1)  =  
𝑛𝜋

4𝐸
 ℎ𝑛

 (13) 

Where 

• 𝒏 is an odd number for single-phase inverter and non-multiple of 3 odd number for three-phase inverter; 

• ℎ𝑖: harmonic component (harmonic of order i) of the output voltage; 

• 𝛽𝑖: switching angle (i takes value from 1 to k) 

• E: DC bus voltage 

This system eliminates harmonics from the output voltage. The solution sought must satisfy the following condition. 

𝛽1 <  𝛽2 <. . . <  𝛽𝒌 − 1 <  𝛽𝒌 (14) 

With 𝑘 =  
𝜋

2
. 
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For the five level inverter, we need two angles to eliminate the first harmonic. 

We have: N =  5, 𝛽𝑘  =  
𝜋

2
 then 𝑘 =  

6𝜋

𝐸
 

𝐿 =  [1 1], then 

𝐷 = [
−2 1 1
−1 −2 1

 
−2 1 1
−1 −2 −1

] 

and 

𝐷† =
1

3
[
1 0 −1
0 1 −1

 
1 0 −1
0 1 −1

]
𝑇

 

The switching angles are given by the equation (9) with: 

𝛽 =  [𝛽1
𝑎  𝛽2

𝑎  𝛽1
𝑏 𝛽2

𝑏 𝛽1
𝑐  𝛽2

𝑐] 𝑇 

The voltages 𝑉𝑎𝑛, 𝑉𝑏𝑛 are alternating and sinusoidal. 

𝑉𝑎𝑛 =  𝑉𝑚𝑎𝑥 𝑠𝑖𝑛 (𝜃 + 𝜑1) et 𝑉𝑏𝑛 =  𝑉𝑚𝑎𝑥 𝑠𝑖𝑛 (𝜃 + 𝜑2) 

Where 𝜑1 and 𝜑2 are the phase of the alternating sinusoidal 𝑉𝑎𝑛 and 𝑉𝑏𝑛 respectively. We are interested in the angles of the phase 
”𝑎” which are: 𝛽1

𝑎 = 𝛽1 and 𝛽2
𝑎 = 𝛽2 

After calculation we get: ` 𝛽1 =
2𝜋

𝐸
𝑉𝑚𝑎𝑥 sin(𝜃 + 𝜑1) + 𝜆1 and 𝛽2 =

2𝜋

𝐸
𝑉𝑚𝑎𝑥 sin(𝜃 + 𝜑2) + 𝜆2 

By setting 𝑟 =
𝑉𝑚𝑎𝑥

𝐸
, we get 𝛽1 = 2𝜋𝑟 sin(𝜃 + 𝜑1) + 𝜆1 and 𝛽2 = 2𝜋𝑟 sin(𝜃 + 𝜑2) + 𝜆2 

Where 0 <  𝑟 <  1, 𝜆1 and 𝜆2 are parameters. 

For three-phase inverter, odd-numbered harmonics and not multiples of 3 are the most troublesome. The Fourier transformation of 
voltage 𝑉𝑎𝑜  of the 5-level inverter which makes it possible to eliminate the 5th harmonic is given by the following system: 

{
cos(𝛽1) + cos(𝛽2) =

𝜋𝑟

2
cos(5𝛽1) + cos(5𝛽2) = 0

 (15)  

With 𝛽1 < 𝛽2  <  
𝜋

2
 and 0 <  𝑟 <  1 

The objective function which minimizes the 5th order harmonics is defined by: 

𝐹𝑡 = 𝑓1
2 + 𝑓2

2 

with: 

𝑓1 = cos(𝛽1) + cos(𝛽2) −
𝜋𝑟

2
 

𝑓2 = cos(5𝛽1) + cos(5𝛽2) 

By replacing in system (15), β1 and β2 by its expressions in (13) we obtain an objective function of the real variable 𝜃 defined by: 

𝐹𝑡  (𝜃)  = 𝑓1
2 (𝜃)  + 𝑓2

2 (𝜃) 
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With: 

𝑓1 (𝜃)  = cos [ 2𝜋𝑟 sin(𝜃 + 𝜑1) + 𝜆1]  + cos  [2𝜋𝑟 sin(𝜃 + 𝜑1) + 𝜆1]  −
𝜋𝑟

2
 

𝑓2 (𝜃)  = cos [ 10𝜋𝑟 sin(𝜃 + 𝜑1) + 5𝜆1]  + cos  [10𝜋𝑟 sin(𝜃 + 𝜑1) + 5𝜆1]  −
𝜋𝑟

2
 

0 <  𝑟 <  1 and 0 <  𝜃 <  2𝜋 

Let determine the value of 𝜃 which minimizes 𝐹𝑡. From 𝜃 we can deduce the ones of 𝛽1 and 𝛽2. 

We then have to solve the following unconstrained one-dimensional optimization problem 

(𝑃): {
min 𝐹𝑡  (𝜃) 
𝜃 ∈ ℝ

 

To solve such a problem, we apply Newton Raphson algorithm described below. 

 

We first set 𝜑1 =  𝜑2 =  0, 𝜆1 =  0.2𝜋, 𝜆2 =  0.4𝜋. 

After, by considering different values of the modulation index r and by applying Newton algorithm, we obtain computational results 
reported in Table 1. 

• On the first column of Table 1, one can observe the different values of the modulation rate r considering; 

• the second column displays the optimal 𝜃 values obtained by applying Newton algorithm; 

• The third and fourth columns of Table 1 gives values of angles 𝛽1 and 𝛽1 deduced from the value 𝜃. 𝛽1 and 𝛽1 are 
optimal switching angles that eliminate the harmonic of rank 5. 

• The fifth column of Table 1, gives the optimal value of the objective function 𝐹𝑡. With respect to the 

• different values of r, we observe that the optimal value of 𝐹𝑡 is equal to zero. 

• On the last column of Table 1 is presented the value of the Total Harmonic Distortion (THD for short). 

• We recall that TDH is calculated from the following formula: 

𝑇𝐻𝐷% = 100 ∗
√∑  (

1
𝑘
∑ cos  (𝑛𝛽𝑖
𝑐
𝑖=1 )) 2∞

𝑘

∑ cos  (𝑛𝛽𝑖
𝑐
𝑖=1 ) 
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Table 1. Computational angles related to (Ft)  

r 𝜽 𝜷𝟏 𝜷𝟐 𝑭𝒕 𝑻𝑯𝑫% 

0.375 
0.392 
0.406 
0.430 
0.480 
0.494 
0.515 
0.542 
0.559 
0.585 
0.659 
0.672 
0.723 
0.734 
0.735 
0.755 
0.771 
0.792 
0.811 
0.835 
0.836 
0.855 
0.913 
0.929 
0.941 
0.953 
0.969 
0.982 
0.995 

0.133492 
0.121628 
0.112568 
0.098412 
0.073303 
0.067179 
0.058508 
0.048320 
0.042356 
0.033837 
0.012839 
0.009557 
-0.002434 
-0.004879 
-0.005098 
-0.009374 
-0.012683 
-0.016904 
-0.020603 
-0.025163 
-0.025336 
-0.028852 
-0.039239 
-0.042046 
-0.044152 
-0.046253 
-0.049058 
-0.051342 
-0.053641 

0.941919 
0.927150 
0.914870 
0.893775 
0.849197 
0.836677 
0.817531 
0.792808 
0.777041 
0.752666 
0.681480 
0.668671 
0.617263 
0.605816 
0.604778 
0.583851 
0.566879 
0.544203 
0.523342 
0.496318 
0.495251 
0.473344 
0.403279 
0.382967 
0.367359 
0.351461 
0.329754 
0.311674 
0.293131 

1.570234 
1.555467 
1.543186 
1.522097 
1.477519 
1.464998 
1.445846 
1.421130 
1.405355 
1.380980 
1.309841 
1.296962 
1.245528 
1.234096 
1.233051 
1.212206 
1.195170 
1.172509 
1.151664 
1.124643 
1.123560 
1.101665 
1.031593 
1.011286 
0.995673 
0.979781 
0.958075 
0.939989 
0.921446 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

31.360533 
31.062920 
31.767937 
32.506718 
30.207441 
29.239489 
27.477114 
24.655218 
22.420815 
18.344477 
20.223440 
20.760332 
21.755127 
21.862438 
21.862312 
21.633421 
21.475634 
21.488253 
20.857637 
18.602015 
18.496464 
16.395521 
10.604527 
11.077692 
11.411861 
11.520555 
11.912003 
12.616569 
13.227317 

 

Fig. 3. 𝜽 as a function of the modulation index r 
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Fig. 4. Solutions angles as a function of the modulation index r 

 

Fig. 5. THD as a function of the modulation index r 

Fig 3, 4 and 5 give the variation of 𝜃, angles 𝛽1, 𝛽2 as a function of the modulation index r, respectively. 

For single phase inverters, proceeding similarly as the case of three phase multilevel inverters, the problem that consists to eliminate 
the third harmonic corresponds to solve the system (16) below. 

{
cos(𝛽1) + cos(𝛽2) =

𝜋𝑟

2
cos(3𝛽1) + cos(3𝛽2) = 0

 (16)  

With 𝛽1 < 𝛽2  <  
𝜋

2
 and 0 <  𝑟 <  1 

After we solve the problem 

(𝑃′): {
min 𝐹𝑚 (𝜃) 
𝜃 ∈ ℝ

 

Where 𝐹𝑚 is such that resorting to the first optimality condition 𝛻𝐹𝑚  =  0, (where 𝛻𝐹𝑚 is the gradient of𝐹𝑚). 

By setting 𝜑1 =  𝜑2 =  0 and 𝜆1 =  0.1𝜋 and 𝜆2 =  0.4𝜋 and applying Algorithm 1, we obtain results summarized in for single 
phase inverters. Note that is similarly read as 

One can observe that solutions that satisfy the constraint (14) are obtained for values of modulation index between 0.552 and 0.999. 
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Table 2. Computational angles related to (Fm)  

𝒓 𝜽 𝜷𝟏 𝜷𝟐 𝑭𝒎 𝑻𝑯𝑫 % 

0.552 
0.570 
0.583 
0.593 
0.604 
0.613 
0.624 
0.632 
0.645 
0.655 
0.664 
0.678 
0.697 
0.708 
0.717 
0.724 
0.733 
0.744 
0.753 
0.761 
0.771 
0.783 
0.794 
0.805 
0.816 
0.828 
0.839 
0.859 
0.878 
0.892 
0.905 
0.919 
0.939 
0.953 
0.970 
0.982 
0.994 
0.999 

0.033034 
0.026696 
0.022321 
0.019064 
0.015582 
0.012818 
0.009517 
0.007179 
0.003457 
0.000675 
0.001776 
0.005488 
0.010368 
0.013125 
0.015325 
0.017028 
0.019182 
0.021761 
0.023865 
0.025688 
0.027971 
0.030648 
0.033092 
0.035509 
0.037905 
0.040498 
0.042858 
0.047125 
0.051195 
0.054193 
0.056997 
0.060040 
0.064360 
0.066221 
0.062860 
0.057928 
0.053299 
0.051326 

0.522959 
0.504003 
0.490165 
0.479433 
0.467538 
0.457774 
0.445718 
0.436913 
0.422418 
0.411186 
0.400998 
0.385029 
0.363002 
0.350024 
0.339371 
0.330951 
0.320070 
0.306688 
0.295509 
0.285593 
0.272923 
0.257650 
0.243349 
0.228845 
0.214112 
0.197775 
0.182548 
0.154158 
0.126111 
0.104830 
0.084484 
0.061932 
0.028954 
0.012180 
0.025552 
0.051191 
0.075691 
0.086386 

1.570158 
1.551201 
1.537366 
1.526638 
1.514742 
1.504961 
1.492906 
1.484112 
1.469604 
1.458390 
1.448184 
1.432230 
1.410201 
1.397229 
1.386569 
1.378136 
1.367253 
1.353869 
1.342694 
1.332775 
1.320132 
1.304831 
1.290552 
1.276018 
1.261291 
1.244996 
1.229767 
1.201318 
1.173349 
1.152070 
1.131725 
1.109178 
1.075533 
1.050595 
1.019376 
0.995965 
0.971340 
0.960814 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

29.707884 
29.172338 
30.049889 
30.790928 
31.296768 
31.422117 
31.366093 
31.313562 
31.375290 
31.516411 
31.608780 
31.521713 
31.098921 
30.930948 
30.871294 
30.833595 
30.735920 
30.497179 
30.239445 
30.032373 
29.859732 
29.753925 
29.624149 
29.384880 
29.120844 
28.968079 
28.954813 
28.804274 
28.667114 
28.878223 
29.004269 
29.040771 
29.779659 
29.699574 
27.947081 
25.661882 
23.688560 
22.899231 

As previously, Fig 6, 7, 8 show the variation of, angles 𝛽1, 𝛽2 and the 𝑇𝐻𝐷 % with respect the modulation index r, respectively. 
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Fig. 6. 𝜽 as a function of the modulation index r 

 

Fig. 7. Solutions angles as a function of the modulation index r 

 

Fig. 8. THD as a function of the modulation index r 
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5 CONCLUSION 

In this paper, based on mean voltage values and from a formula that relates inverters switching angles, we apply inverse generalized 
technique to determine the optimal switching angles by Selective Harmonic Elimination of a single phase and three phase five level 
cascade inverter. This allows to transform a function with several variables into a function with one variable. After, consider different 
values of the modulation index r, we use Newton algorithm to optimize the latter one-dimensional function. As results, we find optimal 
switching angles that eliminate harmonics of rank 3 and 5 for single phase and three-phase inverters respectively. 
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