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ABSTRACT: Image compression is a process of reducing the number of bits needed to represent an image. The goal is to optimize 
storage spaces, facilitate their transmission through the network and thus promote telemedicine. Over the years, several 
compression algorithms have distinguished themselves by their ability to reduce the size of the image while maintaining an 
acceptable visual appearance. These include the JPEG standard, the JPEG2000 standard and many others. The principle of these 
algorithms is essentially based on the reduction wavelet coefficients according to the singularity of the image. In this article, a 
new approach is proposed. The goal of this approach is to zero the wavelet coefficients regardless of the singularity of the 
image. To achieve this goal, our algorithm segments into three fundamental parts. The first part consists in breaking down the 
image into sub-bands through the QWT formalism. Subsequently, in order to obtain orthogonal matrices, we break down the 
matrices of the recently obtained sub-bands into singular values. The objective of these matrices is to exploit the redundancy 
present in the image while putting most wavelet coefficients to zero without, however significantly degrading the visual aspect 
of the image. To close the algorithm, we apply a thresholding function to the previously obtained wavelet coefficients. The 
method was evaluated by computer performance criteria such as ,  ,   and MSE PSNR CR IF and by human visual system 

performance criteria such as SSIM . These criteria are used to judge the quality of the reconstructed image and the 
compression ratio. 

KEYWORDS: Discrete wavelet transform, Medical image, Quaternionic wavelet transform, Image compression, Orthogonal 
basis, Multiresolution analysis. 

1 INTRODUCTION 

Medical imaging is a technique that brings together the means of acquiring and reproducing images of the human body.  
Thanks to these images, a more detailed investigation of the human system is now possible. It allows better targeting of 
treatments, more refined diagnoses, more effective monitoring and more reliable neurological tests. However, the amount of 
data generated in this sector amounts to several terabytes/year, thus saturating the transmission and storage systems [1]. One 
of the solutions to this problem is image compression. The main goal of image compression is to reduce the amount of data 
needed to describe the image while maintaining an acceptable visual appearance of the reconstructed image. The most famous 
compression techniques that have given the best results are those based on the discrete cosine transform (DCT), the discrete 
wavelet transform (DWT) and the quaternionic wavelet transform (QWT). A committee of experts is formulating a compression 
technique for images commonly known as JPEG. Based on DCT, this technique is ISO standardised. Its principle was developed 
by Guitter [2]. In this same particular context of medical imaging compression, contrary to the principle of the JPEG standard, 
other authors such as Lucas, Chen and Wu, after decomposing the image with DCT, performed either scalar or vector 
quantization and/or applied a thresholding function to compress the images [3, 4, 5]. Woods and al proposed sub-band coding 
to compress images [6]. In the 2000s, a new standard was developed by ISO called JPEG2000, the principle of which was 
developed by Ordóňez and al [7]. In the same logic, for the achievement of better results, Ruchika and several other authors 
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to compress images, in addition to the methods developed by Lucas, Chen and Wu, they coupled their results with an arithmetic 
coder [8, 9, 10, 11, 12]. Hui and Besar performed a comparative study between the JPEG standard and the JPEG2000 standard 
applied to chest images. They concluded that JPEG2000 provides better results in terms of reconstructed image quality and 
compression ratio [13]. Perumal and Rajasekaran developed a compression method combining DWT and neural networks [14]. 
Miaou and al used JPEG-LS to compress medical images. This is a compression method combining adaptive coding with a 
Huffman-like encoder [15]. Valette and al propose a new subdivision algorithm that allows simplification of any triangular mesh 
using DWT [16]. Benamrane and al propose a technique for still image compression using neural networks [17]. For image 
compression. Anandan and Sabeenian used the fast curvelet transform coupled with an arithmetic encoder [18]. Juliet and al 
compress images using the Ripplet transform [19]. Although the techniques listed above provide good results, they do not take 
into account the geometric structure of the image. To address this problem of geometric structure, Chan and al propose a new 
image processing scheme based on the QWT [20]. Ledoux and Joseph used QWT to compress images [21]. Madhu and Shankar 
performed a comparative study between CWT, DWT and QWT. They concluded that, for a better compression ratio and image 
quality, QWT gives a better result [22]. Admittedly, transform compression methods have been ranked among the best 
performing techniques for a long time. In fact, wavelets have contributed a lot to the field of digital image processing since the 
1980s, so that various orthonormal wavelet bases can be constructed using multiresolution analysis. These bases are 
differentiated according to their ability to cancel the largest number of wavelet coefficients while respecting the visual aspect 
of the original image. The problem lies in the singularity of the image. If the image has a large singularity, then the number of 
non-zero wavelet coefficients required to reconstruct it will be large. In this paper, we propose a completely new compression 
scheme based on QWT and SVD. The purpose of this algorithm is to reduce the amount of bits needed for the reconstruction 
of an image regardless of the singularity. To achieve this objective, the algorithm is divided into three essential parts. The first 
part consists in breaking down the image into sub-bands by the formalism of the quaternions.Then we break down the 
previously obtained sub-bands into singular values. This is in order to obtain orthogonal matrices so that most wavelet 
coefficients can be applied independently of the singularity of the image. To close the algorithm we apply a thresholding 
function and Huffman coding to all wavelet coefficients obtained in the previous step. 

2 IMAGE DECOMPOSITION USING THE QUATERNION FORMALISM 

2.1  ALGEBRA OF QUATERNIONS 

A quaternion is a number belonging to the body ℍ (body of quaternions) developed by Hamilton in 1843 and written in 

the form q a ib jc kd= + + +  where i , j and k  are abstract numbers that satisfy the following properties: 

1

ij ji k

jk kj i

ki ik j

ijk

= − =


= − =


= − =
 = −

                                                                                                                                                                      ( )1  

with 
2 2 2 1i j k= = = −   

ℍ is a non-commutative field of dimension 4 1, , ,i j k , This means that for any ,p qℍ pq qp . It should be noted 

that, , ,a b c  and 𝑑 ∈ ℝ. The polar form of a quaternion can be defined by: 
i j kq q e   + +=  

With 
2 2 2 2 2q a b c d= + + + et ( )  , , ; ; ;

2 2 4 4

   
    

   
 −  −  −   

   
  

2.2 QUATERNIONIC WAVELET TRANSFORM 

This section deals with the decomposition of 2D images through Chan's perfect reconstruction quaternion theory and 
quaternionic wavelets (QWT) [22]. Unlike DWT, QWT is practically translation invariant [23]. The coefficients resulting from 
this decomposition are expressed in terms of amplitude and phase. The implementation of the QWT is done by considering a 
scalar function and a parent wavelet  which are separable. The analytical 2D wavelet is written:  
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where   is the Hilbert transform: 

We notice that this new decomposition is similar to the complex dual-tree, as we use the same functions as the 2D dual-
tree. In the end, the QWT is a finer analysis of the complex dual-tree. These functions above provide a multi-scale quaternionic 
analysis of the image in three separate global directions: horizontal, vertical and diagonal.  

The analytical coefficients resulting from the decomposition of the image by this formalism are obtained as follows: 
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Unlike the bi-orthogonal wavelet transform, the coefficients from the QWT are quaternionic. 

The figure below, implemented by Soulard in [24], illustrates perfectly well the calculation algorithm and the link with the 
complex wavelet transform. This link is found with the quaternionic Fourier transform which is expressed as two complex 
Fourier transforms through a sympletic decomposition. 

The practical implementation of this decomposition is carried out by four separable 2D filter banks, one for each cartesian 
component of the quaternionic coefficients. 

 

Fig. 1. 2D Decomposition and Reconstruction Structure of Quaternion Filter Banks [24]. 
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3 NEW COMPRESSION ALGORITHM 

The algorithm proposed in this article follows the following steps: 

Step 1: Loading the image; 

Step 2: Image decomposition with QWT at resolution level  j with we obtain ( )3 1j +  elements whose matrices will be noted

and; , , ,, ,   LL j LH j HL j HH j    ; 

Step 3: We eliminate the coefficients and of the; , , ,, ,      th

LL j LH j HL j HH j j     of the decompositions; 

Step 4: This step consists in reconstructing the coefficients of the sub-bands, , ,,LH j HL j  and ,HH j . We obtain a new matrix 

consisting of the coefficients
1 1 1

and, , ,,   LH j HL j HH j   ; 

Step 5: This stage is subdivided into several sub-stages; 

⎯ From step 4, matrices are extracted
1 1 1

and, , ,,   LH j HL j HH j    orthogonal matrices and, , ,,   j p j p j pLH HL HH , for each 

even number p : The matrices and, , ,,    j p j p j pLH HL HH are quaternionic values; 

• Using this sub-section, we construct the orthogonal matrices ( ) ( ) ( ), , ,
,  and 

LH j p HL j p HH j p
A B C by making the 

following considerations: We choose the column vector ( )1 2, ,.........,n nN n n n=  from ,j pLH  which has the 

highest standard of 
1L  in relation to the other columns;  

• We consider a vector ( )1 2, ,............,
T

nX x x x=  such as ( )*

1x a a=  and 0ix = for 2,......i n= ;   

• We let 

1 2
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                                                                             ( )4   

• According to the principle in singular value decomposition, M  can be written as *M U V=  . Therefore, we 

consider
( )

*

,LH j p
A V= . Following the same logic, we determine the matrices ( ),HL j p

B and ( ),HH j p
C  associated 

with the sub-bands ,j pHL and ,j pHH ; 

⎯ The new wavelet coefficients are obtained by performing the following operations: 
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                                                                                                                                                                                                       ( )5   

Step 6: This step involves applying a thresholding function to all new coefficients obtained in the previous step. The choice of 

thresholding is the soft thresholding. Unlike the hard thresholding, which always sets all coefficients below a threshold value 

to zero, the soft thresholding, on the other hand, for coefficients above the threshold value, attenuates the latter according to 

the process described by the following function: 

 si  

0 si  

 si 

S

x x

x

x x

 
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 

− 


= 
 + 

                                                                                                                  ( )6  
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Step 7:  Huffman coding is used at this step. The principle of this code is to associate the most frequent pixels of the image 
with the least bits possible and conversely, we associate the least frequent pixels with the most bits possible. The code 
associated with each pixel comes from a dictionary previously defined according to the logic below: 

⎯ All pixels in the image are listed in order of decreasing probability of appearance; 

⎯ Each pixel is then associated with a sheet of a tree being built; 

⎯ We then connect the cards by creating a node to which we associate the sum of the probabilities of the two 
corresponding symbols; 

⎯ Considering 1 2 3 4p p p p    where 1 2 3 4,  ,   and p p p p  are pixels from an image such that their probability of 

appearance is worth respectively ( ) ( ) ( )1 2 30.25,  0.25,  0.125 P p P p P p= = = and ( )4 0.125P p =  the tree is 

then constructed as follows: 

 

 

 

(a) (b) 

Fig. 2. a: Illustration of the Huffman method. b: Example dictionary for Huffman coding. 

Once the tree structure is built, a symbol 0 or 1 is associated with each branch of the tree structure. Then a dictionary is 
established: 

Step 8: In this step a reconstruction of the image is made from the new wavelet coefficients. 

 The block diagram summarising all these steps is as follows: 

 

Fig. 3. block diagram corresponding to our algorithm. 

Below is the diagram of the algorithm that we have proposed now called algorithm 1, followed by the diagram of algorithm 
2. Algorithm 2 is an algorithm, which follows steps from Algorithm 1. However, unlike the latter, the image is broken down by 
the formalism of the transformed into a discrete wavelet (DWT). To conclude this subsection, we will present the functional 
diagram of the B. LEDOUX algorithm. B. LEDOUX algorithm (Algorithm 3) is one of the algorithms that has shown one of the 
best results in medical image compression in the last three years [21]. Moreover, this algorithm has given even better results 
than the JPEG2000 algorithm, which has been known for its efficiency in image processing for over 20 years [7]. 
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Fig. 4. Flowchart of algorithm 1. 

 

Fig. 5. Flowchart of algorithm 2 

 

Fig. 6. Bloc diagram of algorithm 3 [21] 
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4 EVALUATION OF PERFORMANCE CRITERIA 

The evaluation of the quality of the reconstructed image at the end of the chain is based on several parameters, some of 
which are listed below: 

• Mean Square Error ( )MSE : it measures the information lost between the original image and the reconstructed image at 

the end of the chain. In addition, it measures the distortion between the original image and the reconstructed image after 
decompression.  A large value of this distortion means that the image is of poor quality. This criterion is calculated as the 
average of the squares of the differences between the pixels of the reconstructed image and the pixels corresponding to 
the original image. 

( ) ( )( )
2

2

1 1

1 ˆ, ,
M N

i j
MSE I i j I i j

M N = =
= −


                                                                                   ( )6   

with: ( ),I i j  represents the original image, ( )ˆ ,I i j : represents the reconstructed image.  and M N  are the number of 

rows and columns. 

• Pic signal to noise ratio ( )PNSR : is a factor indicating the quality of the reconstructed image in relation to the original 

image.  A low PSNR value means that the image is of poor quality. The PSNR is calculated as follows: 

2

10

_
log

image dynamics
PSNR

MSE

 
=  

 
                                                                                                   ( )7   

• Compression ratio ( )CR : It defines the gain in volume relative to the initial volume of data. It is obtained by performing 

the following operation: 

( )

( )

ˆ ,
1 100

,

I i j
CR

I i j

 
= −  
 
 

                                                                                                                             ( )8                                           

• Fidelity ( )IF : is a parameter that evaluates the difference between the image obtained after reconstruction and the 

original image. A value close to 1 proves that the reconstructed image is almost identical to the original image. It is 
calculated as follows:  

( ) ( )( )

( )

2 2

2

ˆ, ,

1
,

i j

i j

I i j I i j

IF
I i j

 −
 

= − 
 
 




                                                                                                     ( )9  

• Structural Similarity Index ( )SSIM : This is a parameter that measures the quality of the reconstructed image. Unlike PSNR, 

which measures the pixel-to-pixel difference, SSIM measures the structural similarity between the original image and the 

reconstructed image. This parameter is obtained by the product of the luminance ( ),l x y , the chrominance ( ),c x y  and 

the similarity ( ),s x y  therefore the relation is: 

 ( ) ( ) ( ) ( )
2 2 cov

1 2 3
, , . , . ,

2 2 2 2
1 2 3

c c c
x y x y xy

SSIM x y l x y c x y s x y

c c c
x y x y x y

   

     

   
+ + +   

   = =
   

+ + + + +   
   

                   ( )10  
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k


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

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

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
 =

 =


  

Where L is the dynamic of the image and is 255 for grayscale images 

5 RESULTS AND DISCUSSION 

5.1 RESULTS 

Our algorithm was applied to medical images. The quality of the reconstructed images after compression/decompression 

was evaluated by computational criteria such as the ,MSE  the ,PNSR  the IF and the SSIM . The results obtained are 

as follows: 

a)  Heart  

 

b) Cervical medical branch block 
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c) IRM 

 

d) Respiratory CT Artifacts 

 

e) Back plan of the brain 

 

The evaluation of the quality of the images obtained after compression by computer criteria and the compression ratio are 
recorded in the following table: 

 

 

 

 

 

 



Livane NGUEJIO ZEBAZE, Ernest KIATA, and Laurent BITJOKA 

 

 

ISSN : 2351-8014 Vol. 68 No. 1, Aug. 2023 93 
 

 

Table 1. Algorithm evaluation parameters 

N° Image Original image PSNR  IF  ( )%CR  MSE  SSIM  

1 Back plan of the brain 184 38.095 0.96 85,700 9.852 0,87 
2 Cervical IRM 397 37.031 0.88 91,127 12.588 0,93 
3 Encephale IRM 202 35.415 0.81 94,401 18.685 0,90 
4 echographic 129 34.851 0.79 95,794 21.280 0,64 
5 Axial IRM 119 33.983 0.80 97,806 25.944 0,70 
6 IRM brain 414 30.002 0.701 98,204 30.015 0,89 
7 heart 34 32.556 0.783 97,409 3.011 0,91 
8 mammographic 167 34.685 0.85 94,776 23.689 0,88 
9 Encephalic IRM 90 30.989 0.632 99,036 30.540 0,86 

10 Head injury 286 35.825 0.812 96,339 17.005 0,68 

5.2 DISCUSSION 

Table 1 above presents the results obtained by applying our algorithm to medical images. We can see that the fidelity 
between the original image and the compressed image varies between 0.632 and 0.96. This shows an almost insignificant 
difference between the original image and the compressed image. As far as the compression ratio is concerned, our algorithm 
obtains a ratio varying from 85 to 99. This constitutes a rather remarkable gain in space. Knowing that the MSE is a parameter 
for evaluating the quality of the image, our algorithm obtains an MSE varying between 9.85 and 30.540, proof of the 
performance of our algorithm. An evaluation of the quality of the reconstructed images after compression cannot be effective 
if the PSNR is not calculated. Through its high value, this parameter certifies the good quality of the image obtained after 
compression. The PSNR obtained by applying our algorithm to medical images shows that there is good conservation of the 
image energy, as its value varies between 30 and 38. Based on human visual perception, SSIM measures the structural similarity 
between the original image and the compressed image. This is a value between 0 and 1. A value of the structural similarity 
index between 0.6 and 1 demonstrates the effectiveness of the algorithm. Our algorithm records an SSIM oscillating between 
0.64 and 0.93. 

6 COMPARATIVE STUDY, ANOVA ANALYSIS AND INTERPRETATION 

6.1 COMPARATIVE STUDY 

In this subsection we will compare the skills of algorithms 1, 2 and 3. The idea is to evaluate their performance in terms of 
image quality obtained after compression. These performances were evaluated by computer parameters such as MSE and 
PSNR. For this, we have chosen some medical images with grayscale. The algorithms were performed in the same environment 
(MATLAB) at resolution j=2 and we set the compression ratio to 60%. 

The results of the comparison are listed in the table below; 

Table 2. Compression results for both algorithms 

N° Images Algorithm 3 Algorithm 2 Algorithm 1 

CR MSE PSNR CR MSE PSNR CR MSE PSNR 

1 brain 60 25,35 34,09 60 4.202 41.89 60 3.175 43.11 

2 IRM-1 60 40,39 32,07 60 3.573 42.60 60 2.588 44.001 

3 Encephale IRM 60 29,45 33,44 60 4.808 41.31 60 3.685 42.46 

4 echographic 60 24.76 34,19 60 8.791 38.69 60 7.280 39.50 

5 Axial IRM 60 37,19 32,43 60 7.320 39.48 60 6.944 39.71 

6 IRM brain 60 20,39 35,03 60 7.220 39.54 60 4.415 41.68 

 

With regard to this table, we come to the conclusion that the algorithm likely to be adopted in the medical field is algorithm 
1. Because, for a compression ratio equal to 60%, it records the most important PSNR values compared to the other two 
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algorithms. As for the MSE, parameter measuring the degradation of the image after compression, algorithm 1 gets once more 
better result. These results presented in the table above thus reflect the capability of algorithm 1 provided a quality image 
after compression. 

6.2 ANALYSIS OF ANOVA RESULTS 

ANOVA (analysis of variance) is a statistical test to give the difference between the results while considering the differences 
of each algorithm. It also allows us to say whether the observed difference between the algorithms is significant or not. In 
other words, it will tell whether the results obtained by our algorithm are real and not due to chance. It is essential to specify 
that ANOVA is a statistical model used to compare the means of several algorithms 𝑛 > 2. ANOVA is often associated with a 
so-called Fisher test. To perform the Fisher test it is necessary to check the following conditions: 

• Independent observations (random selection of data considered); 

• normally distributed data; 

• no extreme data;  

• variances of roughly equal groups; 

• The number per group is about equal. 

After validation of these conditions, two hypotheses are formulated: 

• Hypothesis 1 generally noted 0H : this hypothesis suggests that the parameters of each algorithm are 

independent. 

• Hypothesis 2 noted 1H : it however expresses the idea that the parameters are related. 

The principle of the Fisher test is based on the comparison of the same variable between several algorithms. This study is 
based on the calculation of several variations: 

• total variation: this is the variation observed within a group in relation to the group average:   

( ) ( )
2

1

                                                                                                     11
N

total i

i

SS y y
=

= −  

• intergroup variation: measures the variations of two averages between the different groups:                                        

( ) ( )
2

int

1

                                                                                                     12
c

er j

j

SS y y
=

= −  

• Intra-group variation: measures the magnitude of variation within a group:  

( ) ( )
2

int ,

1

                                                                                               13
c n

ra i j

j i

SS y y
=

= −  

ANOVA measures the difference between
int int and er raSS SS . The idea behind ANOVA is whether the gap is observed 

within a group or whether the gap is observed between groups. For this we calculate the parameter related to the 
following Fisher test: 

( )

( )

( )

int

int

:      1
                                                               14

:     

er
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n is the number of cases andc
F with

SS c the number of category
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− 
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
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The value of F calculated in (14) will be compared to the theoretical F from Fisher Snedecor’s table. 
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• If 𝐹𝑐𝑎𝑙 < 𝐹𝑡ℎ  then 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼. The p-value, also called the probability value, is a statistical measure between 
0 and 1. It is used for a hypothesis test. In addition, it is used to give an indication thus determining the quality of 
the observed results. The level of significance is generally defined as 5% (or 0.05). If it generates a p-value less than 
or equal to the significance level, the result is considered statistically significant (and rejects the null hypothesis). 

This is usually written as follows: p 0.05. In this case 0H  is rejected. 

• ANOVA results 

Table 3. ANOVA table for the calculation of F 

Designation Degree of freedom Variance (Sum Sq) Means of Sq (Mean Sq) F value (F value) P value Pr(>F) 

Images 2 236.20 118.10 50.16 72,27 10−  

Residus 15 35.31 2.35 - - 

Note here that the overall probability associated with this test is
72,27 10− .  This value is much less than 0,05  which 

means that there is a significant difference between the PSNR values from each algorithm. In other words, our data are 
significantly different. 

Below we have the two-to-two comparison of each PSNR value obtained through the different algorithms used. This 
comparison will reveal the difference between the algorithms and the level of significance of this difference. 

Table 4. Highlighting the significance between the differences of the algorithms considered 

Differences Estimation Error T value 𝑷𝒓(|< 𝒕|) 

lgo2 lgo1A A−  -1.1683 0.8859 -1.319 0.407 

lgo2 lgo3A A−  -8.2017 0.8859 -9.258 <0.001 

lgo3 lgo1A A−  -7.0333 0.8859 -7.939 <0.001 

Note that the probability associated with the differences algo2-Algo3 and algo3-Algo1 is 0.001. This probability is well below 
0.05 so the difference between these algorithms is very significant. On the other hand, the difference between algo2 and algo1 
is very small because the probability associated with this difference is 0.407 which is much higher than 0.05. 

Below is graphically representation of the differences between each algorithm. 

 

Fig. 7. Difference in mean levels between algorithms. 

As mentioned above, the biggest difference is observed between algorithm 1 and algorithm 3. 
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Fig. 8. Difference between algorithm averages. 

The figure above shows the difference between the averages of the different algorithms used and once again algorithm 1 
gets better result 

 

Fig. 9. Representation of the density of each algorithm according to the PSNR. 

7 CONCLUSION 

In this paper, a new algorithm for compression/decompression of grey-scale medical images was developed. To do so, an 
image decomposition was performed using the QWT formalism. Subsequently, we eliminated the coefficients of the sub-bands

, ,,LH j HL j  and ,HH j  from 
thj  level of decomposition. After reconstruction of these sub-bands, we construct the 

orthogonal matrices ( ),LH j p
A , ( ),HL j p

B and ( ),HH j p
C  such that a matrix product with the sub-bands 

1 1

, ,,LH j HL j  and
1

,HH j  

produces the matrices 
( ) ( )11 12

, ,,LH j HL j  and
( )13

,HH j , most of whose coefficients are set to zero regardless of the singularity of the 

image.  This algorithm not only provides a very good compression ratio, but also a very good quality of the image after 
reconstruction. Furthermore, our algorithm allows better preservation of the geometric structure of the image and to produce 
reconstructed images almost identical to the original image. 
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