
International Journal of Innovation and Applied Studies 
ISSN 2028-9324 Vol. 6 No. 3 July 2014, pp. 504-514 
© 2014 Innovative Space of Scientific Research Journals 
http://www.ijias.issr-journals.org/ 

 

Corresponding Author: Soumia Chqondi 504 
 

 

Spectral Analysis of the Photoionization of Atomic Hydrogen in Intense High-Frequency 
Laser Field: Numerical Simulation 

Soumia Chqondi
1-2

, Richard Taïeb
2-3

, and Abdelkader Makhoute
1-4

 

1
UFR de Physique du Rayonnement et des Interactions Laser-Matière, 

Faculté des Sciences. Université Moulay Ismail, 
B.P. 11201, Zitoune, Meknès, Maroc 

 
2
Sorbonne Universités, UPMC Univ. Paris 06, 

Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 
11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, France 

 
3
CNRS, LCPMR, UMR 7614, Paris Cedex 05, France 

 
4
The Abdus Salam International Centre for Theoretical Physics, 

strada costiera, II - 34100 Trieste, Italy 
 
 

 
Copyright © 2014 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 
 

ABSTRACT: The present work aims at analyzing the dynamics of the photoionization process of a hydrogen atom -modelling a 

single active electron atom- interacting with intense high-frequency laser pulses. The choice of the numerical approach to be 
used for solving the time-dependent Schrödinger equation (TDSE) of an atom in a laser field is based on the fact that when 
the intensity of a femtosecond laser get higher, the electron after it reaches the continuum starts behaving as a free electron 
oscillating in the laser field, which leads to a strong oscillations in the electronic wave function, and then could affect the 
stability in numerical solutions of TDSE. Therefore a highly stable numerical methods are required for solving the TDSE of an 
atomic hydrogen in intense laser pulses, for this reason, we chose to use the three-point finite difference method for the 
spatial discretization of the wave function and the standard Peaceman-Rachford scheme coupled to an inverse iteration 
procedure for the function’s propagation in time. Once the wave function obtained, a spectral analysis of the ejected 
electron based on the use of a window operator is performed to calculate the probability of ionization of a hydrogen atom by 
a high frequency laser field. 

KEYWORDS: Spectral Analysis, Photoionization, Atomic Hydrogen, High-Frequency, Laser, Numerical Simulation. 

1 INTRODUCTION 

The study of the interaction of intense laser fields with atomic systems is subject of interest since the invention of laser 
since the early 60s. The development of high-power pulsed lasers during the past two decades has enabled us to reach of 
higher intensities to 10

14
 W/cm

2
 and with pulse durations of a few femtoseconds (10

-15
 s). With such characteristics, the 

interaction of an intense laser fields with an atomic system leads to non-linear process where a large number of photons can 
be emitted or absorbed. Agostini et al. [4] discovered in 1979 that at sufficiently high intensities (I > 10

11
Wcm

−2
), the ejected 

electron can absorb photons in excess of the minimum number required for ionization to occur. This phenomenon is called 
“above-threshold ionization” (ATI).  "). In the late 1980s the experimenters observed another phenomenon of noble gases 
interacting with intense, short-pulse laser fields: it is the high-order harmonic generation (HHG) [4,5]. 
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So far, most theoretical efforts have been focused on solving the problem of a hydrogen atom, or more generally, a 
single-active-electron atomic system in a strong laser field for which exact calculations can be performed. As for multi-
electron systems the theoretical calculations remains only an approximation. 

The numerical treatment of the interaction of the hydrogenic atom with the intense, high frequency laser fields can not 
be treated within the framework of perturbation theory due to the interaction fields, which becomes comparable to the 
Coulomb field of hydrogen. Therefore, non-perturbatrive methods are required to explain most of the experimental 
observations. It is necessary in this case to solve the time-dependent Schrödinger equation (TDSE), which is usually found in 
non-perturbative theories. At the end of the interaction, our system is represented by the final wave function obtained from 
the numerical resolution of the TDSE, the analysis of the spectra of the ejected electrons whose ATI peaks were observed, 
can help us to calculate easily the probability of ionization of  H(1s) by linearly polarized laser pulses. 

2 CHARACTERISTICS OF THE LASER FIELD 

The chosen laser field is characterized by its electric field  of peak amplitude E
0
 5×103 a .u .  of frequency 


0
 0.57u .a .  (corresponding to a period of T

L
 20

11.02 u .a .  0.25 fs ) and modulated by an envelope f 

(t). The total duration of the pulse 
max
t  is defined by the following expression: 

max
 ,

cycle Lt n T  where n
cycle

 is the number of 

optical cycle of the laser field. 

For a linearly polarized laser pulse, the electric field can be written in the dipole approximation as 

      ,                                            (1) 

where  represents the polarization vector and ( )f t  defines the temporal profile of the laser pulse (envelope), which 

is chosen to be trapezoidal. It rises linearly over five optical cycles, remains constant for thirty cycles then it is ramped linearly 
down over the final five cycles: 

f (t ) 

t

5 ×T
L

        si  0  t  5×T
L

   1           si  5×T
L
 t £ 35 ×T

L
  


t

5 ×T
L

8   si  35×T
L
 t  40 ×T

L
   

ì

í











 

 

The temporal evolution of the electric field defined with the expression (1) is then given in the following figure: 
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Figure 1: Temporal evolution of the electric field of the laser pulse with a frequency of 
0
 0.57a .u .(the photon energy 

of 15.5 eV) and a peak amplitude E0= 5.10
-3

a.u. (Corresponding to a peak intensity of  8.77 × 10
11

 W/cm
2
) for 40 optical cycles 

(trapezoidal envelope) 

3 NUMERICAL APPROACH 

In addition to the analytical methods, different numerical methods have been developed to describe the interaction of 
the laser field with the active electron. Our numerical approach is to solve numerically the time-dependent Schrödinger 
equation (TDSE) in a non-perturbative way, namely  

( )0( , ) ( , )inti r t H H r t
t


 


y y

 

   ,                                                    (2) 

where
0

H  is the time-independent, non-relativistic field-free atomic Hamiltonian, which is written as follows: 

H
0
 E

c
 E

p
 

1

2


1

r
,  with 

c
E  the kinetic energy of the electron, and 

P
E the potential energy. The term intH  

represents the time-dependent Hamiltonian describing the interaction of the atom with the laser field given by  in 

length gauge or  in velocity gauge with  defined in (1) is the electric field of the laser and  is the potential 

vector.   

If we limit ourselves to laser pulse linearly polarized along the z-axis, the magnetic quantum number m of the electron is 
conserved, the time-dependent Schrödinger equation describing the atom in a laser field in the length gauge is given by (in 
atomic units) 

2

2

0 02 2

1 1 1 1
( , ) ( ) sin( ) ( , )

2

r
i r t L E zf t t r t
t r r r r r

ì æ öæ ö   
    ç ÷í ç ÷

  è ø è ø 
y  y

             ,         (3) 

where the position r


 is expressed using the spherical coordinates ( ), ,r  j . 

 We can separate the radial part of the wave function from its angular part by expanding it in spherical harmonics 

                               ( ) ( ) ( )
( )0

0

( ) , ,      ,, , , ,
i

iL

i i i

R t
r t r t Y r t

r

   y  j  j 
  



               (4) 

The finite difference representation at three points can be employed for a discretized representation of the kinetic 
energy, the field-free Hamiltonian H0 becomes 
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( ) ( )
( )

( )

( ) ( )

2

1 1

0 12

0

0

0

1 1 ( 1) 1
( ) ( ) 2 ( ) ( )

22

1
                        = ( )                                                          

, , , ,

,

i i i i

i i i

i

i i i i

i

H r t Y cR t c R t dR t R t
r r rr

Y H R t
r






ì æ ö 

     í ç ÷
 è ø  





y  j  j

 j

    


 


 

                                        (5)

 

with ( 0.5)ir i x    and the coefficients 
i
c and 

i
d  are defined by [6] 

2

2 1/ 4
i

i
c

i



   ,           

2

2

1/ 2

1/ 4
i

i i
d

i i

 


 
. 

We see that the Hamiltonian matrix 
0

H  is diagonal in the angular momentum quantum number  and is tridiagonal in 

the grid index i, therefore the non-zero elements are given by 

( )

( )

( )

'

' '

2

2

1

2

2

'

, '

0, , ,

'

                     1
2

                     1
2

( 1) 1
    

2

i

i

i i

i i

i

c
i i

r

c
H i i

r

d
i i

r rr



ì
  





   í


 
   
 


   

 

                                                 (6) 

Substituting Equations (4) and (5) into the TDSE (3), we find that 

                                          ( )0 ' '
'

( )
( ) ( ),

i
i iR t

i H R t H R t
t


 




 


                                                            (7) 

with 'H   are the matrix elements of the interaction Hamiltonian 

                                              ( ) ( )0 0
' , ,

int
H Y H Y  j  j                                                                (8)     

The interaction Hamiltonian in the length gauge is given by 

                                                   ( ) ( ) cos ,
int
H zE t E t r                                                                          (9) 

  is the angle between the vector r and the z-axis. 

The matrix elements of the interaction Hamiltonian in the angular momentum basis is given by 

( )

( )
( ) ( ) ( ) ( )

( )

', 1 ', 1

',

1

0 '0 0 cos '0

+1
                     =

2 +1 2 3 2 +1 2 1

 ,    '  = 1      
                     =

 ,  '  = 1     

int

i
i

i

i i i

H E t r

E t r

a
E t r

a

 



 

æ ö
ç ÷ 
ç ÷ è ø

ì
 í





 



   





   

 

   

 

 

    ,              (10) 

where the coefficients la  are given by 

a
ℓ


ℓ1

(2ℓ1)(2ℓ3)
                                                               (11) 

This matrix  
int

H  is then tridiagonal in the angular momentum quantum number ℓ and diagonal in the grid index i. 

ℓ
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 Substituting Equation (9) into Equation (6), we can then rewrite the TDSE in the form 

( )
( )

 

2

1 1

12

0 0 ', 1 1 ', 1

( ) 1 ( 1) 1
( ) ( ) 2 ( ) ( )

22

               ( ) sin( ) ( )

i i i

i i

i

i
i i i i

i

R t
i c R t c R t d R t R t

t r rr

E r f t t a a R t







  

æ ö 
     ç ÷

  è ø

   


   

      

 

       .           (12)       

Since both the matrix H0 and the matrix Hint(t) are tridiagonal, we can use the implicit method of Peaceman-Rachford, 

which consists in replacing the differential equation by two discretized equations (tridiagonal) used for periods 
t

2
, namely 

1 1

0 0( ) ( )
2 2 2 2

i i
I I

t t t t
R t t I iH I iH I iH I iH R t

 
         

                 
                (13) 

Let                                
0 ( ) ( )

2 2
i i

I

t t
I iH I iH R t t

    
        

 
                                    (14) 

0
( ) ( )

2
i i

tridiagonale

t
I iH t t t 
 
 


    



                                           (15) 

Using the Routine Tridag for solving a tridiagonal system, we can calculate ( )i t t . 

 Finally we must solve the following system to find R
l

i (t t )  

( ) ( )
2

i i

I

tridiagonal

t
I iH R t t t t 
 
 


    



                                 (16) 

In our simulations, we took r  0.1a .u .  ,t  0.1a .u . and the ground state of the hydrogen atom 

 as the initial state of the system . 

4 SPECTRUM OF THE EJECTED ELECTRON 

4.1 WINDOWS OPERATOR TECHNIQUE 

For laser intensities of about 10
12

 W/cm
2
, the ejected electron can absorb a number of photons in excess of the minimum 

number required for ionization; by having a number N of photons absorbed, then additional photons S above the threshold, 
the bounded electron thus acquired a kinetic energy equal to 

( ) 0 icE N S E                                                      (17) 

where 
i
E  is the ionization energy, that is the minimum energy required for the electron initially located in the ground 

state (n = 1) to be no longer bound to the atom. 

In our case, a linearly polarized photon, having an energy of 

2

0

0 0

0.57 . . 0.5 . .
8

i

e
a u E a u

a
  

 
, remove the 

electron from the hydrogen atom, therefore the dominant ionization process will be photoionization (N = 1), it can be 
summarized by the following reaction 

0i j
H H e 

   

Ri

l
(t  0)  2r

i
e

ri
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 At the end of the pulse laser, i.e. at time t
max

, our atomic system was represented by final-state wave function 

( )max
,

f
r ty  from which we can deduce the energy spectrum of the ejected electrons by using an adequate method, which 

does not require the computation of all the eigenstates of the system. It is based on the use of a window operator 

( ), ,ˆ
k

F E n g  [7]: 

( )
( )

2

2 2
, ,ˆ

n

n nk

k

F E n
E




g
g

g
                   ,                                      (18) 

with n is the order of the window operator, and g  is the parameter, which determines the spectral width of the window, 

i.e. the energy resolution of the analysis. A good value of g  should not be too big if you want to be able to extract 

information such as ATI spectrum peaks. 

Using the window operator (see Eq. 18) we can determine the energy spectrum of photoelectrons ejected from 

hydrogen, such as the total probability of finding the electron energy (in the final state) within the interval 
k
E g  

( )
( )0

2

2 2
, ,

                  =

n

n nk

k

f f
P E n

H E


 

g
g y y

g

 

            ,                     (19) 

with                                           

( )

1

1 1

0

2

2 2

n

n n

k

f

H E i



 


 

g
 y

g
                                                        (20) 

 

To satisfy a good energy resolution, we choose n = 2 [6], thus equation (20) becomes 

  ( )0

2 2 2

k f
H E i   

 
g  g y                                          (21) 

( ) ( )0 0

2

k k f

tridiagonal tridiagonal

H E i H E i          g g  g y


                                  (22) 
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Figure 2: Probability P E
k
,n ,g( )   for n = 2, g 103  a .u . , in Logarithmic scale as function of the photoelectron energy. 

We use L
max

 8  and  a  forty-cycle laser pulse of photon energy 
0
 0.57a .u .  and maximum amplitude : (a) E

0
 0 a .u .  

(b) E
0
 5.103  a .u .. 

 

Figure (2) shows the probability ( ), ,
k

P E n g on a logarithmic scale. Peaks whose energy 0E   correspond to the 

bound states of the atom, while in the continuum, there is well positioned three peaks at 0.0699 a.u., 0.639 and 1.209 a.u. 

respectively, which are separated by one photon energy 
0

0.57 . .a u   This agrees fairly well with the expected theoretical 

value. Indeed, the first peak of the spectrum corresponds to the ionization of hydrogen from its 1s ground state by absorbing 
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a photon of energy
0
 0.57a .u . , while the second and third peaks are related to the ATI. The widths and shapes of these 

peaks are consistent with the Fourier transform of the laser pulse shape, as is expected if no resonance enhancement is 
involved. 

 

 

Figure 3: Shifting of ATI peaks due to ponderomotive effects, which cause an increase in the ionization potential value. 

 

The ATI peak position is seen to shift with a value of  Up toward lower energies which results in a change in the ionization 
potential of the atom. Up can be interpreted as the cycle-averaged kinetic energy of a quivering electron in a laser and can be 
written in a.u. as: 

2

22
0

( / )

4 ( . .) ( / )
p

I W cm
U

a u I W cm



             ,                                           (23) 

with I
0

W / cm 2( )  3.5´1016W / cm 2
. 

The kinetic energy of the ionized electron (17) can be rewritten as follows 

( ) ( )0c i pE N S E U                                                            (24) 

This last expression shows that the released electron energy depends not only on the number of the absorbed photons, 

but also on the value of the field at its release. Therefore, the ATI peaks have a certain width  (the 

photon energy divided over the length of the pulse), this value is in good agreement with those extracted from Figure (2). 

5 PROBABILITY OF TOTAL IONIZATION 

      We can calculate the total ionization probability from the ATI spectrum: 

m ax m ax

0 0

( )
( )

         ( )

E E

ion

k k

k

dP E
p dE E dE

dE

E E

 

 

 



r

r
                ,                       (25) 

where ( )
k
Er  is the probability density of finding the electron ejected with an energy close to 

k
E . 
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Figure 4: probability density of the free electrons r(E
k
,2,g )  (blue) and the probability ( ), ,

k
P E n g  (black), with a 

spectral width 
310g   and with the same laser pulse parameters ( )0 0 .

, ,
c o

E n as in Fig. (2). 

 
      In our system there is only one electron that is involved in the process, the final state can then be developed in the basis 
of eigenvectors of H0: 

0
 ( )

f
e

c d e c e e


  y 


                                                 (26) 

Thus we can write ( ), ,
k

P E n g  (Equation 19) as a sum over the bound states and an integrand over the continuum: 

                 

( )

( ) ( )
22

, , , ,
0

, ,

ˆ ˆ                  = ( )

k

k k

c

e

P E n P P

c F E E n de c e F E e n 


 

 

g

g g







        (27) 

      It corresponds to the total probability of locating the electron either in the bound states of the atom or in the states of 
the continuum. 

       In the region 0E  , equation (27) becomes: 

                                       ( ) ( )
2

, ,
0

ˆ, , ( )
k k

e
P E n de c e F E e n


 g g                        (28) 

If the value of g  is chosen small enough such that c(e) does not change too much on a large area of energy [5], (28) can 

be written [8]: 
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, ,
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ˆ, , ( )  F
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k k
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P E n c E de E e n

c E
n n





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 ç ÷

è ø
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      This formula makes the link between the probability density c (E )
2

and the probability ( ), ,
k

P E n g : 
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                                                            (31) 

We can then convert the ATI spectrum in a probability density, by using equation (31) the conversion factor is then 



2
csc



4

æ

è
ç

ö

ø
÷g  (for n = 2). The ionization probability (Equation 27) p

ion
 can be approximated by the following formula: 
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, ,
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2

k kion

k

p P E n E

n n

 
æ ö
ç ÷
è ø

 g
 

g
                            (32) 

As part of our calculation, the expression (32) gives us a probability of ionization 0.013983 au, this value is close to that 

calculated from the projection of the final wave function on the bra of the initial (fundamental) state j
1s

 such as: 

                                                       1

2
( ) 1 ( )

ion s
p t t  j y                                                          (33) 

we notice from Figure (5), that at the end of the interaction p
ion

1 P
n=1

 0.01397a .u .. 

A second procedure for calculating the total ionization probability is given by calculating the total probability for an 
electron to remain in the bounded states after the interactions: 

                                      

2

max
P ( )n

n

t  j y
états  liés                                             (34) 

the total probability of ionization of the system is: 

                                               liés
1 P

ion états
p                                                                        (35) 

Using Figure (2), we can easily extract the amount of probability for each bound state P
états  liés

such as: the result for 

1n   is in good agreement with that of the ground state population at the end of the interaction 
2

max
( )n tj y , while 

the contributions of  are found to be of 107u .a .  of magnitude, which allows us to neglect them in our study. 

 

n ³ 2
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Figure 5: Ionization probability, 1 j
1s
y(t )

2

 ,versus time for the same laser field parameters as above. 

6 CONCLUSION 

We have presented numerical methods that we have used to solve the time dependent Schrödinger equation for a 
hydrogen atom in presence of a strong and short laser field. The obtained wave function was analyzed in energy by means of 
a window operator which allowed us to analyze the energy spectra of the ejected electron. We observed typical ATI peaks 
separated by one photon energy and we evaluated the probability of the photoionization of the hydrogen in such extreme 
conditions. 
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