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ABSTRACT: We investigated the impact of the kdr genotypes on the survival rate of mosquitoes exposed to insecticides in the 

main malaria vectors Anopheles coluzzii and An. gambiae s.s.. The genotype-phenotype interaction was investigated 

following two experimental designs; the first one consisted to determine  the survival rate of well-characterized adult 

mosquito strains sharing different kdr genotypes but same genetic background to various insecticides, whereas the second 

one consisted to expose wild mosquitoes  to the same insecticides. Two to five days old adult females were exposed to DDT 

(4%), deltamethrin (0.05%), and permethrin (0.75%) following WHO protocols. Alive and dead specimens were kept 

separately to screen the kdr mutations 1014F. The correlation between the kdr genotype and the survival rate to insecticides 

was investigated in An. coluzzii and An. gambiae s.s. using a logistic regression model. In the laboratory strains, after 

exposure to DDT and permethrin, the survival rate was significantly higher in F/F individuals comparing to L/F and L/L 

individuals (p<0.05). A perfect correlation was observed between the survival rate and the genotype in An. gambiae s.s.. The 

survival chance in this population was multiplied by 1.9 [1.2; 2.8] for L/F and 3.2 [2.1; 4.7] for F/F individuals after exposure 

to DDT; and 3.7 [1.8; 7.3] for L/F and 9 [4.8; 17.0] for F/F individuals after exposure to permethrin. In the wild population of 

An. coluzzii, the survival rate correlated with the genotype after exposure to permethrin and was significantly higher in F/F 

individuals comparing to L/F and L/L individuals (p<0.05). In L/F and F/F individuals, the survival chance was respectively 

multiplied by 2.7 [1.4; 5.8] and 3.2 [1.4; 6.9] after exposure to DDT; 2.1 [1.0; 4.1] and 4.1 [2.3; 8.7] after exposure to 

permethrin; and 2.5 [1.1; 5.3] and 3.9 [1.9; 8.0] after exposure to deltamethrin.  

Overall, the mosquito survival rates were significantly higher in wild population comparing to laboratory strains after 

exposure to pyrethroid insecticides. These results suggest that additional mechanisms such as metabolic resistance might 

contribute to a large extend to phenotypic resistance in malaria vectors. 
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1 INTRODUCTION 

The control of insects of medical importance is primarily based on the application of insecticides. Today, the number of 

insecticides available for malaria vector control is limited to four classes (Pyrethroids, Organophosphates, Carbamates and 

DDT). Ongoing strategies of malaria vector control rely on the use of Long Lasting Insecticidal-treated Nets (LLINs) and Indoor 

Residual Spraying (IRS) [1]. LLINs and IRS are highly depending to pyrethroid insecticides.  
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The widespread use of DDT and more recently pyrethroids for vector control has increased selection to pyrethroids 

resistance mechanisms in malaria vectors ([2]-[5]). In Africa, the situation of pyrethroids resistance is worrying ([4],[6]-[7]) as 

it may severely affect the efficacy of vector control interventions as reported recently in Benin ([8]-[9]) and Senegal [10]. 

Pyrethroids and DDT target the voltage gate sodium channel site. Knock-down resistance (kdr) or target-side mutation is one 

of the two major forms of resistance to DDT and pyrethroid insecticides. Two alternative substitutions of the Leucine 1014 

residue can lead to target site resistance. The Leucine to Phenylalanine substitution at position 1014 (L1014F) was found 

predominant in West and Central Africa whereas the Leucine to Serine substitution (L1014S) originated from Kenya [11], has 

recently spread in Central ([12]-[14]) and West African regions ([15]-[17]). Co- occurrence of both mutations in same 

specimens of An. gambiae s.l. was found in Cameroon [12], Equatorial Guinea [18], Gabon [19], Uganda [20], Burkina Faso 

[16] and Senegal [17].  

The other major form of resistance termed metabolic resistance results from increased detoxification processes by gene 

amplification and/or expression [21]. The over-expression of P450 mono-oxygenases has been described from several 

pyrethroid-resistant populations of An. gambiae ([3],[22]) and An. arabiensis [23]. In this enzyme family, CYP6M2 is a 

promising genetic marker for pyrethroid/DDT resistance as it has been demonstrated to metabolize both insecticide classes 

[24]. A second family of metabolic enzymes, glutathione-s-transferases (GSTs), is thought to play a significant role in DDT and 

pyrethroids resistance in An. gambiae [22]. Recently, Djegbe et al. [2] and Djouaka et al. [25] reported the presence of 

CYP6M2, CYP6P3 and GSTe2 in several pyrethroid-resistant populations of An. gambiae and An. funestus from Benin. In this 

country, entomological surveys of An. gambiae s.l. susceptibility have been carried out in some sentinel sites since 2007 and 

metabolic resistance was suspected in some An. gambiae s.l. populations ([3],[6],[15]). More recently, the presence of this 

metabolic resistance and both kdr mutations were reported ([2],[6]). However, the impact of kdr, the main pyrethroid-

resistance mechanism on the survival rate to insecticides is not well understood. The association between these mutations 

and the pyrethroid and/or DDT-resistance phenotype in An. gambiae s.s. has been shown in several studies using 

quantitative trait loci (QTL) [26] and the genotype–phenotype association approaches ([9],[27]). However, some authors 

working on colonized and wild-caught specimens of An. arabiensis from Sudan concluded that there was no association 

between genotype and phenotype [28]. What might partially confound these studies is that it was not yet possible at that 

period to determine the role of additional resistance mechanisms, such as metabolic resistance. Today, advanced molecular 

tools are available to screen the metabolic-resistance in resistant mosquitoes. It is therefore possible to infer which 

resistance mechanisms are having the greatest impact on vector control programs. 

In this paper we investigated the association between the presence (yes/no) of kdr genotype and resistance phenotype 

(resistance/susceptible) and the role of other resistance mechanisms involved in the DDT and pyrethroids insecticides using 

laboratory and wild strains of An. gambiae mosquito. We used two laboratory strains of An. gambiae sharing a common 

genetic background, one susceptible to insecticides (Kisumu) and the second resistant to pyrephroid/DDT (kdrkis) and 

homozygous for the kdr-L1014F mutation; in order to determine the “weight” of kdr genotypes (L/L, L/F or F/F) in the 

mosquito survival after insecticide exposure without confounding effect. Finally, we compare the survival rate between 

kdrkis and wild pyrethroids/DDT-resistant mosquito to show the part of others resistance mechanisms (e.g., metabolic 

resistance) to provide survival advantage to mosquitoes in contact with insecticides.  

2 MATERIALS AND METHODS 

2.1 MOSQUITOES STRAINS 

2.1.1 LABORATORY STRAIN 

Kisumu is a reference laboratory strain originating from the Kisumu region in western Kenya. This strain has been 

maintained in the laboratory for more than 20 years and is free of any detectable insecticide resistance mechanism (L/L at 

position 1014). Kdrkis is homozygous resistant for the 1014F allele (F/F at position 1014). This last strain has the same genetic 

background with Kisumu (strain due to 19 generations of back-crossing between Kisumu and VKPER strains and selection 

with permethrin). VKPER originates from Kou Valley in Burkina Faso [29] and is homozygote resistant for the 1014F allele. 

Biochemical assays showed that Kisumu and Kdrkis exhibit similar enzymatic detoxification profiles (Djegbe, pers. comm.). To 

evaluate the phenotypic expression of heterozygotes individuals (L/F), F1 progeny were produced by mating Kdrkis males 

(F/F) with Kisumu females (L/L). Each strain was checked for their kdr genotypes before bioassays.  
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2.1.2 WILD MOSQUITO POPULATION 

 An. gambiae larvae mosquito were collected from four different sites in Benin (Cotonou, Tori-Bossito, Bohicon and 

Malanville) in the framework of a WHO/TDR project on “Insecticide Resistance Mechanisms in Benin” ([2],[15]). All larvae 

were brought back to the laboratory of Centre de Recherche Entomologique de Cotonou (CREC) for rearing. Emerging adult 

female mosquito (F0) were used for insecticide susceptibility tests and molecular assays. 

2.2 INSECTICIDE SUSCEPTIBILITY TEST 

Insecticide susceptibility tests were carried out using the WHO standard protocol [1]. Two to five days old and non blood-

fed adult females An. gambiae were tested. Batches of 20–25 mosquitoes were exposed to test papers impregnated with 

0.75% permethrin, 0.05% deltamethrin and 4% DDT. Impregnated papers were obtained from the WHO reference centre at 

the Vector Control Research Unit, University Sains Malaysia (Penang, Malaysia). For each test session, about 100 mosquitoes 

were used. Controls included batches of mosquitoes from each strain exposed to untreated papers. The knockdown (KD) 

effect of each insecticide was recorded every 10 minutes over the one-hour exposure period. Mosquitoes were then 

transferred to a recovery tube and provided with 10% sugar solution. Final mortality was recorded 24 hours post-exposure. 

Dead and alive mosquitoes were then stored individually in codified tubes with desiccant and preserved at -20°C until 

laboratory processing. 

2.3 MOLECULAR IDENTIFICATION AND KDR GENOTYPING 

Only field collected mosquitoes were used for molecular assays. For each insecticide, equal number of alive and dead 

mosquitoes was subjected to DNA extraction according to the bioassay. Specimens were identified to species by RFLP-PCR 

([30]-[31]), and the genotype at the kdr locus was determined using HOLA (Hot Oligonucleotide Ligation Assay) technique 

according to protocol described by Lynd et al. [32]. 

2.4 DATA ANALYSIS 

Correlation between survival rates to DDT, permethrin, deltamethrin and kdr phenotype was investigated using a logistic 

regression model with the statistical software package R 2.4. Fisher’s exact test was used to assess the relationship between 

survival rates and kdr genotypes in the presence of DDT, permethrin and deltamethrin. The level of significance was set at 

p<0.05. 

The parameters used in the model were as follow: 

���������	�
� = 
�	�
|���� =
1

1 + exp	[−��� + �� × 1�� + � × 1���]
 

« Survival rate” is a dichotomic variable expressed as dead (=0) and alive (=1).  

“Genotype” is a categorical variable expressed as L/L = 0, L/F =1 and F/F = 2.  

  β0, β1 and β2 = model parameters. 

3 RESULTS 

3.1 BIOASSAY AND  SPECIES IDENTIFICATION 

Respectively 1,728 and 1,391 laboratory strain and wild caught mosquitoes were exposed to Public Health insecticides. 

The number of alive and dead mosquitoes after exposure period was recorded (tables 1 and 2). Overall, 1,391 Anopheles 

gambiae s.l. wild populations’ mosquitoes were successfully genotyped, among which 1,039 mosquitoes were An. coluzzii, 

305 were An. gambiae s.s. and 47 mosquitoes were An. arabiensis (table 1). Data from all sites were pooled according to 

insecticide and the correlation between genotype and phenotype was determined. Because of the low number of An. 

arabiensis mosquitoes observed, statistical analyses were performed only with An. gambiae s.s. and An. coluzzii.  
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Table 1: Number of alive and dead laboratory strain of An. gambiae s.s. after exposure to insecticides 

  

Insecticides 

Laboratory strain of An. gambiae s.s.  

Phenotypes  Genotypes 

  L/L L/F F/F Total 

4% DDT  

Alive 44 85 142 271 

Dead 146 108 50 304 

Total 190 193 192 575 

0.75%  Permethrin  

Alive 12 36 101 149 

Dead 194 131 90 415 

Total 206 167 191 564 

0.05% Deltamethrin  

Alive 13 18 75 106 

Dead 175 178 130 483 

Total 188 196 205 589 

Table 2: Number of alive and dead An. gambiae s.s., An. coluzzii and An. arabiensis mosquitoes after exposure to insecticides 

and kdr genotypes 

Insecticides Phenotypes Anopheles coluzzii Anopheles gambiae s.s. An. arabiensis 

 
  Genotypes 

    L/L L/F F/F Total L/L L/F F/F Total L/L L/F F/F Total 

4% DDT  

Alive 27 26 27 80 14 4 8 26 1 1 1 3 

Dead 51 18 16 85 8 4 1 13 9 4 0 13 

Total 78 44 43 165 22 8 9 39 10 5 1 16 

0.75% 

Permethrin  

Alive 14 69 150 233 4 10 55 69 0 0 4 4 

Dead 40 95 95 230 5 35 40 80 11 1 0 12 

Total 54 164 245 463 9 45 95 149 11 1 4 16 

0.05% 

Deltamethrin  

Alive 12 53 141 206 7 9 43 59 2 1 3 6 

Dead 36 63 106 205 6 16 36 58 5 4 0 9 

Total 48 116 247 411 13 25 79 117 7 5 3 15 

3.2 RELATIONSHIP BETWEEN SURVIVAL RATE AND GENOTYPE 

In the laboratory strains, after exposure to DDT and permethrin, a perfect correlation was observed between the survival 

rate and genotype. The survival rate was significantly higher in F/F in comparison with L/F and L/L individuals (p<0.05). In 

contrast, no correlation was found between the survival rate and the kdr genotypes after exposure to deltamethrin (p>0.05). 

With this insecticide, only F/F individuals showed a high survival rate (Figure 1). 

The wild population of An. coluzzii demonstrated a significant correlation between the survival rate and genotypes after 

exposure to permethrin. The survival rate decreased significantly from F/F individuals, L/F individuals and L/L individuals 

(p<0.05). After mosquitoes exposure to DDT and deltamethrin in this same species, only F/F individuals showed high survival 

rate, whereas L/F and L/L mosquitoes showed similar trend in survival rates (Figure 2). Overall, the survival rates were 

significantly higher in wild mosquito population than the laboratory strain after exposure to pyrethroids insecticides (p=0.00) 

(table 3). 

Table 3: Comparison of survival rates between laboratory strains and wild population of An. gambiae s.s..  

Insecticides 

  

Genotypes     

 Laboratoy strain Wild strain Odd-ratio P-value  

4% DDT 

L/L L/L 3.0  0.008  

L/F L/F 1.2 0.177  

F/F F/F 1.3 0.388  

0.75% Permethrin 

L/L L/L 11.3 0.000  

L/F L/F 1.0 0.001  

F/F F/F 1.2 0.117  

0.05% Deltamethrin 

L/L L/L 11.6 0.000  

L/F L/F 5.0 0.000  

F/F F/F 1.6 0.000  
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Figure 1: Survival rates to DDT, permethrin and deltamethrin in laboratory strains of An. gambiae s.s.. Histograms with the 

same letters are not significantly different 

 

Figure 2 : Survival rates to DDT, permethrin and deltamethrin in wild An. coluzzii population. Histograms with the same letters 

are not significantly different 

3.3 CORRELATION BETWEEN SURVIVAL CHANCE AND GENOTYPE 

In the laboratory strains sharing the same genetic background with different resistance genotypes (L/L, L/F and F/F), a 

significant correlation was found between kdr genotypes and survival chance after exposure to DDT and permethrin. No 

correlation was found when mosquitoes were exposed to deltamethrin. When exposed to DDT, the survival chance was 

multiplied by 1.9 [1.2; 2.8] for L/F, and 3.2 [2.1; 4.7] for F/F individuals. With permethrin, this survival chance was multiplied 

by 3.7 [1.8; 7.3] and 9 [4.8; 17.0] respectively for L/F and F/F individuals. No difference was observed between the survival 

chance of L/L and L/F individuals when exposed to deltamethrin (p=0.45), but this chance was significantly high in F/F 

individuals (5.3 [2.3; 9.8], p=0.000) (Table 4).  
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Table 4: Survival chance for each kdr L1014F genotypes in laboratory strains of An. gambiae s.s.. 

Insecticides Genotypes An. gambiae s.s.  

4% DDT 

  Parameters Odd ratio and CI 95% p-value 

L/L  β0 = - 1.463 1 0.0000 

  L/F   β1 = 0.643 1.902 [1.255 ; 2.882] 0.0020 

F/F β2 = 1.161 3. 194 [2.155 ; 4.732] 0.0000 

0.75% Permethrin 

L/L β0 = - 2.843 1 0.0000 

L/F β1 = 1.308 3.701 [1.866 ; 7.337] 0.0002 

F/F β2 = 2.206 9.077 [4.835 ; 17.043] 0.0000 

0.05% Deltamethrin 

L/L β0 = - 2.671 1 0.0000 

L/F β1 =  0.284 1.328 [0.633 ; 2.786] 0.4530 

F/F β2 =  1.666 5.291 [2.291 ; 9.846] 0.0000 

 

 

In the wild population of An. coluzzii, a good correlation was observed with all insecticides tested (p<0.05). The survival 

chance was multiplied by 2.7 [1.4; 5.8] and 3.2 [1.4; 6.9] respectively for L/F and F/F individuals after DDT exposure. For the 

same individuals, this survival chance was multiplied by 2.1 [1.0; 4.1] and 4.1 [2.3; 8.7] respectively after exposure to 

permethrin. After deltamethrin exposure, the survival chances were 2.5 [1.1; 5.3] and 3.9 [1.9; 8.0] respectively for L/F and 

F/F individauals. For the wild population of An. gambiae s.s., no difference was observed on the survival chances with all 

genotypes and all insecticides tested (p>0.05) (tables 5). 

Table 5 : Survival chance according to kdr L1014F genotypes in wild population of An. coluzzii and An. gambiae s.s.. 

Insecticides Genotypes        An. coluzzii         An. gambiae s.s 

4% DDT 

  Parameters Odd ratio and CI 95% p-value Parameters Odd ratio and CI 95% p-value 

L/L β0 = - 0.6360 1 0.0075 β0 = 0.5596 1 0.207 

L/F β1 = 1.0037 2.7283 

[1.4690 ; 5.8391] 

0.0097 β1 = - 0.5596 0.5714 

[0.1113 ; 2.9329] 

0.502 

F/F β2 = 1.1592 3. 1873 

[1.4690 ; 6.9156] 

0.0033 β2 = 1.5198 4.5713 

[0.4803 ; 43.5025] 

0.186 

0.75% Permethrin 

L/L β0 = - 1.0498 1 0.0007 β0 = - 0.2231 1 0.739 

L/F β1 = 0.7301 2.0752 

[1.0481 ; 4.1089] 

0.0361 β1 = - 1.0296 0.3571 

[0.0804 ; 1.5859] 

0.176 

F/F β2 = 1.5066 4.1513 

[2.3300 ; 8.7348] 

0.0000 β2 = 0.5416 1.7187 

[0.4339 ; 6.8080] 

0.441 

0.05% Deltamethrin 

L/L β0 = - 1.0986 1 0.0009 β0 = 0.1541 1 0.782 

L/F β1 =  0.9258 2.5238 

[1.1939 ; 5.3351] 

0.0153 β1 = -0.7295 0.4821 

[0.1234 ; 1.8829] 

0.294 

F/F β2 =  1.3839 3.9904 

[1.9809 ; 8.0382] 

0.0001 β2 = 0.0235 1.0238 

[0.3155 ; 3.3215] 

0.969 

4 DISCUSSION 

Various mechanisms enable Anopheles mosquito to resist the action of insecticides, including metabolic resistance, 

target-site resistance, reduced penetration and behavioral resistance. These mechanisms may allow mosquitoes to resist 

more than one insecticide (cross-resistance), and Anopheles may express more than one resistance mechanism (multiple 

resistances). Of all these types of resistance, perhaps the most significant in An. gambiae populations is knockdown 

resistance (kdr) [33].  The importance of kdr mutations as a stand-alone mechanism conferring pyrethroids resistance is still 

subject to debate. In this context, by using both laboratory strain and wild caught population, we demonstrated the 

contribution of other resistance mechanism (e.g., metabolic resistance) to provide pyrethroids/DDT resistance in An. 

gambiae mosquito from Benin. The two laboratory strains of An. gambiae s.l.  involved in this study shared the same genetic 

background but differed from the L1014F kdr genotype. In our laboratory pyrethroid-resistant strain, it seems that kdr was 

the only resistance mechanism involved. Bioassay using synergists and biochemical tests failed to demonstrate any 

involvement of metabolic detoxification due to oxidases, esterases or glutation-s-transferases. WHO tube test bioassays 

showed a high survival advantage in F/F and F/L laboratory strains of An. gambiae when exposed to DDT and permethrin, 
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with a perfect correlation between the kdr L1014F genotype and the survival rate. However, no correlation was found with 

deltamethrin (type II of pyrethroids). Similar trend were obtained by Matambo with a colony of An. arabiensis from the 

Sennar region of Sudan selected by exposure to DDT [28]. Over the course of this selection, the mortality rate decreased 

from 90.6% to 12.1% 24hrs post-exposure to 4% DDT. No mortality was observed in the F16 generation after exposure to 

0.75% permethrin, while only 24% mortality rate was recorded after exposure to 0.05% concentration of deltamethrin [28].  

The relationship between the kdr genotype and the phenotypic resistance in malaria vectors has been extensively reviewed 

[34]. Martinez-Torres et al. [35] have shown that in seven samples from West Africa, the frequency of the L1014F allele 

correlated strongly with reduced mortality in a permethrin-World Health Organization (WHO) tube test. Also, a clear 

correlation was shown between inheritance of the kdr L1014S mutation and permethrin resistance ([11],[26]). Simulated 

field trials of insecticide-treated bed nets (ITNs) in Côte d’Ivoire showed that kdr L1014F had a strong impact on the efficacy 

of nets treated with pyrethroids (cypermethrin) and etofenprox. Here, L1014F homozygotes showed a survival advantage 

[36]. The same trend was observed in Burkina Faso, where the protective effect of permethrin-treated plastic sheeting was 

apparent against susceptible genotypes but not against kdr homozygotes [37]. Similarly in Benin, low mortality of An. 

gambiae L1014F homozygotes was observed after exposure to permethrin-treated nets [38]. In this study, no correlation was 

found between the survival rate and kdr genotype in wild mosquitoes populations. Furthermore, in wild population of An. 

gambiae, F/L and L/L individuals showed similar survival rate with DDT and no difference was observed between the survival 

rates after Pyrethroids exposure (figure 3). In An. coluzzii, F/F and L/F individuals displayed similar survival rates when 

exposed to DDT and deltamethrin. These results suggested that if kdr L1014F mutations confer a significant effect on vector 

resistance, they do not fully explain the observed vectors resistance level to insecticides because homozygous susceptible 

(L/L) and heterozygous (L/F) subjects survived to pyrethroids/DDT exposure, suggesting an involvement of other alternative 

mechanisms such as metabolic resistance mechanisms. Results obtained in this study agreed with the standpoint suggested 

by Brooke [39], arguing that kdr may act with certain cofactors that are thus far unidentified. This resistance mechanism 

could be multigenic and the kdr genotype might not fully explain all the variance in the resistance phenotype. It is possible 

that besides the L1014F kdr mutation, others mutations in the para-type sodium channel gene might be needed for 

mosquitoes to survive after exposure to a discriminating concentration of an insecticide. Note that a de novo mutation 

(N1575Y) recently emerged within domains III-IV of voltage gate sodium channel in pyrethroid resistant populations of An. 

gambiae from West Africa and seems to occur only in a single long-range haplotype, also bearing the 1014F allele [40]. It has 

been suggested that the N1575Y mutation may compensates for deleterious fitness effects of 1014F and/or confers 

additional resistance to pyrethroids insecticides [40]. 

Recent evidences have also stressed the preeminent role of metabolic resistance as the most important mechanism of 

resistance in the major Anopheline mosquito vectors [41] with cytochrome P450s especially from the CYP6 and GST families 

taking the front seat in conferring resistance to the four major insecticides used for public health interventions ([2],[42]-[44]). 

Interestingly in Benin, some recent studies have shown the presence of four metabolic genes including GSTE2, GSTD3, 

CYP6P3 and CYP6M2 in An. coluzzii collected in the same sentinel sites (Cotonou, Malanville, Bohicon and Tori-Bossito) 

([2],[5]). Other major resistance mechanisms exist and decrease the cuticular penetration of insecticides in mosquito species 

[4].  As the first line of defense against insecticides, a thicker cuticle leads to a slow rate of insecticide absorption and 

penetration, which reduces the uptake of insecticides. For example, in an An. funestus population collected from southern 

Mozambique, pyrethroids resistance was associated with an increased cuticle thickness [45]. The temporal and spatial of two 

cuticular proteins in An. gambiae revealed the potential function of two proteins (CPLCG3 and CPLCG4) in slowing insecticide 

penetration [46]. Recently, a functional genomics study revealed that cuticular proteins were associated with deltamethrin 

resistance in laboratory and field populations of C. pipiens pallens [47]. Furthermore, evidence suggests that behavioral 

resistance also plays a role in reducing the efficacy of insecticide treatment [4]. Genetic changes in mosquito populations 

may result in decreasing the chance of contacting insecticides through modified feeding and resting activities ([48]-[50]). This 

suggests that failure in malaria vector control strategies with the field population of mosquito should not only be attributed 

to the kdr L1014F mutation.  
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Figure 3: Survival rates to DDT, permethrin and deltamethrin in wild An. gambiae s.s.. 

Histograms with the same letters are not significantly different.  

5 CONCLUSION  

Our results revealed that in wild population of malaria vectors, the kdr resistance may act with certain cofactors to be 

identified. The kdr L1014F mutation alone could not provide survival advantage to pyrethroid insecticides. Suggesting that 

additional mechanisms such as the metabolic resistance contribute to a large extend to phenotypic resistance in malaria 

vectors.  
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