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ABSTRACT: We prove in this article using some convex analysis results of A. S. Lewis, the log-concavity of spectral elementary 

symmetric functions on the space of Hermitian matrices, and the convexity of the set of k-admissible functions on compact 
Kähler manifolds. 
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1 INTRODUCTION AND STATEMENT OF RESULTS 

All manifolds considered in this article are connected. 

Let (�, �, g, ω) be a compact connected Kähler manifold of complex dimension � ≥ 1. Fix an integer 1 ≤ k ≤ m. Let 

� ∶  M →  ℝ  be a smooth function and let us consider the (1,1)-form ῶ = ω + i ∂ ∂�φ  and the associated 2-tensor �� defined 

by ��(� , � ) = ῶ(� , �� ). Consider the sesquilinear forms ℎ  and ℎ�  on ��,� defined by ℎ (�, �) = g(U, V�) and ℎ�(U, V) = ��(U, V�). 

We denote by �(�����) the eigenvalues of ℎ�  with respect to the hermitian form ℎ . By definition, these are the eigenvalues of 

the unique endomorphism � of ��,� satisfying: ℎ�(U, V) = h(U, AV)   ∀U, V ∈  ��,�.  

Calculations infer that the endomorphism � writes:  

� ∶  ��,� →   ��,�  

     ����  →  ��
�
����=���̅

���� ̅����  

� is a self-adjoint/hermitian endomorphism of the hermitian space (��,�, ℎ ), therefore �(�����) ∈ ℝ�. 

Let us consider the following cone: Γ� =  �� ∈ ℝ�, ∀1 ≤ � ≤ �  ��(�) > 0� , where ��  denotes the �-th elementary 

symmetric function. 

Definition. � is said to be �-admissible if and only if �(�����) ∈ Γ�. 

In a note in the Comptes Rendus de l’Académie des Sciences de Paris published online in December 2009 [1], we solve the 

equations  ῶ�˄ ���� =
��

��
� �

 �� (��), when the holomorphic bisectional curvature of � is nonnegative. In this proof 

performed by the continuity method, two results following from convex analysis techniques were needed, namely the 
Corollaries 1.5 and 1.6. 

Let us now introduce some convex analysis notations. Let ��(ℂ) be the space of complex Hermitian matrices of order �. 
We recall that for any two matrices � and � of ��(ℂ), � ∈ ℂ is called a �-eigenvalue of � if there exists � ≠ 0 in ℂ� such 
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that �� = ���, � is then called a �-eigenvector of �. Let � ∈ ��(ℂ) be a fixed positive definite matrix. Let us recall the 
following basic result : 

Lemma 1.2. Let � ∈ ��(ℂ), then: 

1. The spectrum of ���� (i.e. the �-spectrum of �) is entirely real. 

2. The greatest eigenvalue of ���� (i.e. the greatest �-eigenvalue of �) equals sup���
���,��

���,��
 , where <. , . > denotes the 

standard Hermitian product of ℂ�. 

3. ���� is diagonalizable. 

Since the spectrum of ���� is the spectrum of the Hermitian matrix ��
�

����
�

�, the proof is an easy adaptation of the 
standard one for symmetric matrices. 

For a given Hermitian matrix �, we denote by ��(C) the eigenvalues of � with respect to �. In this article, we prove the 
following four results using the Theorem 2.3 and the Corollary 2.4 of Lewis [2] (see Theorem 2.1 of this article): 

Theorem 1.3. For each � ∈ {1, . . . , m}, the function: 

��
�: ��(ℂ) →  ℝ ∪ {+∞}, � → ��

�(�) = �
− ln �����(�)� �� � ∈ ��

��(Γ�)

+∞ otherwise,
 

where ��
��(Γ�) = {� ∈ ��(ℂ), ��(C) ∈ Γ�}, is convex. 

Theorem 1.4. If Γ is a (non empty) symmetric convex closed set of ℝ�, then ��
��(Γ): = {� ∈ ��(ℂ), ��(C) ∈ Γ}, 

is a convex closed set of ��(ℂ). In particular, ��
��(Γ�

�  ) is a convex closed set of ��(ℂ). 

By the Theorem 1.3, and since ��
��(Γ�) is convex (Theorem 1.4), we deduce that: 

Corollary 1.5. The function: 

−��
�: ��

��(Γ�) →  ℝ, � → ��
�(�) = ln �����(�)�   is concave. 

The method used here to prove the Corollary 1.5, gives for � = � a different approach from the proof of [3] and the 
elementary proof of [4, p. 51] and [5]. 

As an immediate consequence of Theorem 1.4, we get the following important result, that allows to notably simplify the 
proof of uniqueness of the solution of the equation (��) in comparison with [5]: 

Corollary 1.6. For a compact connected Kähler manifold (�, �, g, ω), the set of �-admissible functions: 

A� = �� ∈ ��(�, ℝ), ���ω + i ∂ ∂�φ� ∈ Γ��    is convex. 

2 SOME CONVEX ANALYSIS 

The space ��(ℂ) has a structure of Euclidean space thanks to the following scalar product ≪ �, � ≫=  tr( A�  
� B) =

 tr(AB), called the Schur product. Let us denote by ��(ℝ�) the set of functions �: ℝ� →  ℝ ∪ {+∞} that are convex, lower 
semicontinuous on ℝ�, and finite in at least one point. Given � ∈ ��(ℝ�) symmetric and � ∈ ��(ℂ) positive definite, we 
define:  

��
�: ��(ℂ) →  ℝ ∪ {+∞}, �� � → ��

�(�): =  �(��,�(�), … , ��,�(�))      

 

where ��,�(�) ≥ ��,�(�) ≥  … ≥  ��,�(�)denote the B-eigenvalues of C repeated with their multiplicity. Such functions ��
� 

are called functions of B-eigenvalues or B-spectral functions. Our first aim is to determine the conjugation for such a 
function ��

� using the conjugate function of u. Let us remind that the conjugation or the Legendre–Fenchel transform of u is 
the function �∗: ℝ� →  ℝ ∪ {+∞}  defined by: 
 

∀s∈ ℝ�, �∗(�) = sup�∈ℝ�{‹�, �› − �(�)} 
 

where ‹. , . › denotes the standard scalar product on ℝ�. 
 
Theorem 2.1 (A. S. Lewis [2], Conjugation of spectral functions). Let � ∈ ��(ℝ�) be symmetric, then: 

1. The conjugate �∗ (∈ ��(ℝ�)) is also symmetric. 
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2. The functions of eigenvalues ��
� and ��∗

�  (defined as above) belong to �����(ℂ)� with ��∗
� = (��

�)∗, so that in particular the 

function of eigenvalues ��
� is convex and lower semicontinuous. 

 
Proof. See the Theorem 2.3 and the Corollary 2.4 of Lewis [2].  ∎ 
 

A similar theorem is proved in the case of symmetric matrices in [6] and [7] (you can see also [8] and [9] for some details). 

Corollary 2.2 (Conjugation of �-spectral functions). Let � ∈ ��(ℝ�) be symmetric, then: 
1. The conjugate �∗ (∈ ��(ℝ�)) is also symmetric. 

2. The functions of �-eigenvalues ��
� and ��∗

�  (defined as above) belong to �����(ℂ)� with ��∗
���

= (��
�)∗, so that in 

particular the function of �-eigenvalues ��
� is convex and lower semicontinuous. 

3 PROOF OF THEOREMS 1.3 AND 1.4. 

3.1 PROOF OF THEOREM 1.3.  

The proof of Theorem 1.3 is a direct application of the Corollary 2.2 to the function: 

u : ℝ� →  ℝ ∪ {+∞}, � = (��,… , ��)  →  u(x)  =  �
− ln ��(��, … , ��) �� � ∈ �� 

+∞  ��ℎ ������
   (3.1) 

Our function � is symmetric and belongs to  ��(ℝ�), indeed: 
(i) It is clearly symmetric. It is finite in a least one point of ℝ� because ��  is non empty. And it is convex, because the 

function (��)
�

� ∶  �� →  ℝ is concave [3, p.269]. 
(ii) It is lower semicontinuous. Indeed, let � ∈ ℝ, and consider the set: 

{� ∈ ℝ�/ +∞ ≥ �(�)  >  �}  =  {� ∈ �� / �(�)  >  �} ∪ {� ∉  ��/�(�)  >  �} 
=  {� ∈ ��/− �� ��(�)  >  �}  ∪  (ℝ� ∖ ��)                 (3.2)                                                                                                                                                  

By continuity, {� ∈ �� / − �� ��(�)  >  �}  is an open set of ��, it is then an open of ℝ� since ��  is an open of ℝ�. 
Furthermore, the cone ��  is also a closed set of ℝ� (as a connected component), consequently ℝ� ∖ ��  is an open set of ℝ�. 
Therefore, {� ∈ ℝ�/ +∞ ≥ �(�)  >  �} is an open set of ℝ� too. This is valid for all � ∈ ℝ, so that � is lower 
semicontinuous. 

Therefore, we deduce by the Corollary 2.2 that the �-spectral function ��
�=��

�  is convex, which proves the theorem. 

Let us remark that the same technique allows to prove for example that the functions 

�(�) := "the greatest �-eigenvalue" of �                     and 
��(�) := "the sum of the � greatest �-eigenvalues" of �  

with � ∈ {1, . . . , �},                   (3.3) 
are convex on ��(ℂ). 

3.2 PROOF OF THEOREM 1.4.  

The proof of Theorem 1.4 goes by considering the indicatrix function �� ∶=  ��  of the set �, namely: 

�� ∶=  �� ∶  ℝ� →  ℝ ∪ {+∞}, � = (��,… , ��)  →  ��(�)  =  �
0  �� � ∈ � 

+∞  ��ℎ ������
   (3.4) 

From the assumptions made on �, �� lies in ��(ℝ�) and is symmetric, indeed: 
(i) This function is clearly finite in at least one point since  � is non empty. 

(ii) The inequality ��(�� + (1 −  �)�) ≤   � ��(�) +  �1 –  �� ��(�) is valid for all �, � ∈ ℝ� and all � ∈  [0, 1]. Indeed, if 

�, � ∈ � then �� + (1 −  �)� ∈ �  by convexity of �and the two sides of the convexity inequality equal 0 in this 
case. Furthermore, if � or � does not belong to � then the right side of the inequality equals +∞ and the inequality 
is then satisfied in this case too, which proves that ��  is convex. 

(iii) ��  is lower semicontinuous. Indeed, let � ∈ ℝ� : If � ≥ 0 then {� ∈ ℝ� /+∞ ≥  ��(�)  >  �}  = ℝ� ∖ � is an open 
set since � is closed. Besides, if a < 0, {� ∈ ℝ� /+∞ ≥  ��(�)  >  �} = ℝ�  is an open set too. 

So Corollary 2.2 implies that the function of �-eigenvalues ���
�  lies in ��(ℝ�); in particular it is, convex lower semicontinuous. 

But this function is given by: 

 ���
�: ��(ℂ) →  ℝ ∪ {+∞}, � → ���

� (�)  =  �0  �� � ∈ ��
��(Γ) 

+∞  ��ℎ ������
   (3.5) 
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In other words, it coincides with ���
��(�), the indicatrix function of ��

��(Γ). So the latter must itself be convex lower 

semicontinuous. As a consequence, ��
��(Γ)is a convex closed (non empty) set of ��(ℂ), indeed: 

(i) ��
��(Γ) is convex because if �, � ∈ ��

��(Γ) and � ∈ [0,1], we have by convexity of ���
��(�), 

 
���

��(�)(�� + (1 −  �)�) ≤ ����
��(�)(�) + (1 − �) ���

��(�)(�)                 (3.6) 

 

               But ���
��(�)(�) = ���

��(�)(�) = 0 then necessarily ���
��(�)(�� + (1 −  �)�) = 0 and �� +  (1 −  �)� ∈  ��

��(Γ). 

(ii) The set ��
��(Γ) is closed because �� ∈ ��(ℂ)/  +∞ ≥ ���

��(�)(�)  >  0� = ��(ℂ) ∖ ��
��(Γ) is an open set since  

���
��(�) is lower semicontinuous. 

4 SIMPLIFICATION OF THE PROOF OF UNIQUENESS OF THE SOLUTION OF (��). 

The Corollary 1.6 allows to notably simplify the proof of uniqueness of the solution of the equation (��) in comparison 
with [5]. 
Let �� and �� be two smooth �-admissible solutions of the equation (��) such that ∫ �� ��

�
=∫ �� ��

�
= 0. For all 

� ∈ [0, 1], let us consider the function �� = �  �� + (1 −  �) �� =  �� +  � � with � = �� − ��. Let � ∈ �, and let us 

denote ℎ �
�(�) = ������

�
+ ���̅(�)���̅��(�)��. We have ℎ �

�(1) − ℎ �
�(0) = 0 which is equivalent to ∫ ℎ �

��
(�)�� = 0

�

�
. But: 

 

ℎ �
��

(�) = � ��
���

���
�

�

���

����
�

+ ���̅(�)���̅��(�)�� ���̅(�)� 

�

�,���

���̅�(�) 

 

Let us denote ���
� (�) = ∑

���

���
�

�
��� ����

�
+ ���̅(�)���̅��(�)�� ���̅(�). Therefore we obtain: 

 

��(�) ≔ ∑ ���(�) �
�,��� ���̅�(�) = 0       with      ���(�) = ∫ ���

� (�)
�

�
 �� 

 

We show easily that the matrix ����(�)�
���,���

 is hermitian [4, p. 53]. By the Corollary 1.6, we know that for all � ∈ [0, 1] and 

all points � ∈  �, ��������
� �(�) ∈  ��, namely that the functions (��)�∈[�,�] are �-admissible. 

We check then easily that the hermitian matrix ����(�)�
���,���

 is positive definite for all � ∈  � [4, p. 54]. Consequently, 

the operator � is elliptic on �. But the map � is �� and satisfies  �� =  0, then by the Hopf maximum principle [10], we 
deduce that � is constant on �. Besides ∫ � �� = 0

�
, therefore we deduce that � ≡  0 on � namely that �� ≡ �� on �, 

which achieves the proof of uniqueness. 
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