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ABSTRACT: Consumers demand for quality of food has triggered the need for the development of a number of non-thermal 

approaches to food processing, of which Irradiation technology has proven to be very valuable.  This review and research 
aims to develop the models for various constituents of sliced chicken undergoing Irradiation treatment for increasing the 
self-life. The models developed are as a function of irradiation dose (0-6)kGy, by plotting the graph and finding the trend 
equation with there R

2
 on M S Excel. 
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1 INTRODUCTION 

The term "radiation chemistry" refers to the chemical reactions that occur as a result of the absorption of ionizing 
radiation. In the context of food irradiation, the reactants are the chemical constituents of the food and initial radiolysis 
products that may undergo further chemical reactions. The chemistry involved in the irradiation of foods has been the 
subject of numerous studies over the years and scientists have compiled a large body of data regarding the effects of ionizing 
radiation on different foods under various conditions of irradiation. The basic principles are well understood and provide the 
basis for extrapolation and generalization from data obtained in specific foods irradiated under specific conditions to draw 
conclusions regarding foods of a similar type irradiated under different, yet  related, conditions. The types and amounts of 
products generated by radiation induced chemical reactions ["radiolysis products") depend on both the chemical 
constituents of the food and on the specific conditions of irradiation. 

The principles of radiation chemistry also govern the extent of change, if any, in both the nutrient levels and the microbial 
loads of irradiated foods. 

Factors Affecting the Radiation Chemistry of Foods- Apart from the chemical composition of the food itself, the specific 
conditions of irradiation that are most important in considering the radiation chemistry of a given food include the radiation 
dose, the physical state of the food (e.g., solid or frozen versus liquid or non-frozen state, dried versus hydrated state), and 
the ambient atmosphere (e.g., air, reduced oxygen, and vacuum). The temperature at which irradiation is conducted can also 
be a factor, with more radiation-induced changes occuring with increasing temperature. Temperature is less important, 
however, than the physical state of the food. The amounts of radiolysis products generated in a particular food are directly 
proportional to the radiation dose. Therefore, one can extrapolate from data obtained at high radiation doses to draw 
conclusions regarding the effects at lower doses. 

The radiation chemistry of food is strongly influenced by the physical state of the food. If all other conditions, including 
dose and ambient atmosphere, are the same, the extent of chemical change that occurs in a particular food in the frozen 
state is less than the change that occurs in the non-frozen state. This is because of the reduced mobility, in the frozen state, 
of the initial radiolysis products, which will tend to recombine rather than diffuse and react with other food components. 
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Likewise, and for similar reasons, if all other conditions are the same, the extent of chemical change that occurs in the 
dehydrated state is less than the change that occurs in the fully hydrated state. 

The formation of radiolysis products in a given food also is affected by the ambient atmosphere. Irradiation in an 
atmosphere of high oxygen content generally produces both a greater variety, and greater amounts, of radiolysis products in 
the food than would be produced in an atmosphere of lower oxygen content. This is because irradiation initiates certain 
oxidation reactions that occur with greater frequency in foods with high fat content. 

With few exceptions, the radiolysis products generated in a particular food are the same or very similar to the products 
formed in other types of food processing or under common storage conditions. These radiolysis products are also typically 
formed in very small amounts. Radiation-induced chemical changes, if sufficiently large, however, may cause changes in the 
organoleptic properties of the food. Because food processors want to avoid undesirable effects on taste, odor, color, or 
texture, there is an incentive to minimize the extent of these chemical changes in food. Thus, the doses used to achieve a 
given technical effect (e.g., inhibition of sprouting, reduction in microorganisms) must be selected carefully to both achieve 
the intended effect and minimize undesirable chemical changes. 

Typically, the dose or dose range selected will be the lowest dose practical in achieving the desired effect. Irradiation also 
is often conducted under reduced oxygen levels or on food held at low temperature or in the frozen state. 

In general, during inactivation of microorganisms on surfaces, the rate of inactivation is inversely proportional to the 
initial cell concentration (Shintani, 2000). Food irra-diation is being considered an important tool, in ensuring safety and 
extending shelf-life of fresh meat and poultry (Yoon, 2003). Thus irradiation can eliminate food-borne pathogenic 
microorganisms in meat. Furthermore, the use of gamma irradiation as a safety techno-logical treatment in food 
preservation has now become legally accepted in many countries of the world (Abdel-Daium, 2007). 

Misconceptions about Irradiated Food 

There are misconceptions in the minds of consumers regarding irradiated food. However, scientific research has proved 
that consumption of irradiated food is absolutely harmless. The safety of food processed by radiation has been examined 
carefully, both at the national and international levels. On the basis of extensive studies with laboratory animals carried out 
in different countries including India, FAO/IAEA/WHO Joint Expert Committee has recommended that the food items 
irradiated up to an average dose of 10 kilo Gray be accepted as safe from the health angle and do not present any 
toxicological hazards. In fact, the doses of irradiation required for the treatment of commodities are far below this stipulated 
limit. The committee has further recognized radiation as a physical process like thermal processing and not as a food 
additive. 

The irradiation process involves passing of food through a radiation field allowing the food to absorb desired radiation 
energy. The food itself never comes in contact with the radioactive material. Gamma rays, X-rays, and electrons prescribed 
for radiation processing of food do not induce any radioactivity in foods. In comparison to other food processing and 
preservation methods the nutritional value is least affected by irradiation. Extensive scientific studies have shown that 
irradiation has very little effect on the main nutrients such as proteins, carbohydrates, fats, and minerals. Vitamins show 
varied sensitivity to food processing methods including irradiation. For example, vitamin C and B1 (thiamine) are equally 
sensitive to irradiation as well as to heat processing. Vitamin A, E, C, K, and B1 in foods are relatively sensitive to radiation, 
while riboflavin, niacin, and vitamin D are much more stable. The change induced by irradiation on nutrients depends on a 
number of factors such as the dose of radiation, type of food, and packaging conditions. Very little change in vitamin content 
is observed in food exposed to doses up to 1 kGy. The Joint Expert Committee of the Food and Agriculture Organization 
(FAO), World Health Organization (WHO), and International Atomic Energy Agency (IAEA), in 1980 concluded that irradiation 
does not induce special nutritional problems in food. The committee also rejected the possibility of development of 
chromosomal abnormalities by the consumption of irradiated food. 

Mathematical modeling is an effective way of representing a particular process. It can help us to understand and explore 
the relationship between the process parameters. Mathematical modeling can help to understand and quantitative behavior 
of a system. Mathematical models are useful representation of the complete system which is based on visualizations. 
Mathematical modeling is an important method of translating problems from real life systems to conformable and 
manageable mathematical expressions whose analytical consideration determines an insight and orientation for solving a 
problem and provides us with a technique for better development of the system.  

The objective of the study is to model the changes in various compositions of irradiated chicken meat in respect to the 
radiation dose given. 
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2   MATERIALS AND METHODS  
26

Sliced chicken were purchased from local market (Benha, Qaliobia governorate, Egypt). All samples were transported to 
the laboratory food irradiation unit, Nuclear Research Center in ice-box (0°C) and surveyed for microbiological counts for 
counts of total bacteria, psychrophilic bacteria, spore forming bacteria, total molds and yeasts. Then, sliced chicken samples 
were packed in tightly sealed polyethylene pouches and divided into seven groups and stored in freezing till irradiation 
treatments.  

Gamma irradiation treatments
26

  

Four bags from each of sliced chicken were gamma irradiated at 0, 2, 4, and 6 kGy doses using cobalt-60 gamma chamber 
(1.367 kGy/h) in Cyclotron Project, Nuclear Research Center Atomic Energy Authority, Inshas, Cairo, Egypt. After irradiation, 
all samples were stored at 4±1°C. 

Microbial analysis
26

  

Colony forming units for total bacterial count were counted by plating on plate count agar medium and incubated at 30°C 
for three to five days (APHA, 1992). Total molds and yeasts were counted on oxytetracycline glucose yeast extract agar 
medium according to Oxoid, (1998). psychrophilic and spore forming bacteria count according to (FDA, 2002).  

Statistical analysis
26

  

The statistical evaluation of the mean data was compared using one-way analysis of variance (ANOVA) according to Zar 
(1984). The chosen level of significance was P≤ 0.05.  

3   RESULT AND DISCUSSION 

 

 

Fig 1. % composition of sliced un treated chicken 
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Fig 2. % composition of sliced irradiated chicken for 2 kGy 

 

Fig 3. % composition of sliced irradiated chicken for 4 kGy 

 

Fig 4. % composition of sliced irradiated chicken for 6 kGy 
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Fig 5. Modeled Graph for  % moisture content Vs Irradiation dose 

 

From above graph we can say that % moisture content decreases from 0-1 kGy then rises from 1-4.5 kGy then again decreases till 6 kGy. 

 

 

Fig 6. Modeled Graph for  % Protein Vs Irradiation dose 

 

From the above graph we can say that first there is decrease in % protein content from 0-2 kGy and then rises from 2- 5 kGy then again 
decrease from 5-6 kGy.  
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Fig 7. Modeled Graph for  % Lipid content Vs Irradiation dose 

 

From the graph above we can make out that there is increase in % lipid content for 0-2 kGy dose of Gamma-irradiation, then it 
decreases from 2-4.8 kGy and then again abrupt rise till 6 kGy. 

 

 

Fig 8. Modeled Graph for  % Ash content Vs Irradiation dose 

 
From the above graph it can be concluded that there is rise in % Ash from 0 kGy till 3 kGy then it decreases till 6 kGy. 
 

4   CONCLUSION 
 
The effect of various gamma irradiation doses on the chemical composition of sliced chicken was studied and the data 

and From above graphs, it could be noticed that the moisture, total protein, lipid and ash contents were tends to change with 
the irradiation treatment of sliced chicken respectively. From the above graphs and model prepared one can make out the 
changes in compositions of sliced chicken with the irradiation dose (0-6) kGy of the same. 
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