Cysticercosis bovis in Eastern Tigray, Northern Ethiopia

Haylegebriel Tesfay and Alembrahan Assefa
Department of Biology, Adigrat University, P.O. Box 50, Adigrat, Ethiopia

Copyright © 2014 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: Taeniasis is an important worldwide food borne parasitic disease. A cross sectional study was conducted on 540 bovine species from October 2012 to March 2013 to determine prevalence and associated risk factors of cysticercosis at Adigrat Municipal Abattoir. The overall prevalence of cysticercosis was 5.73% (29). Infection prevalence of cysticercosis was significantly associated with age, body condition and breed of cattle (P < 0.05). Infection rate of cysticercosis with respect to age group showed that higher prevalence was in cattle 5 and above years (8.47%) than below 5 years (2.96%) (χ²= 7.949, p = 0.003) and infection rate with respect to body condition revealed the highest prevalence (13.5%) was in poor followed by medium and good body condition scores 4.6 and 1.66%, respectively (χ²= 23.1, p = 0.000). Related to breed of cattle highest prevalence (6.31%) was in Holstine – Fresian followed by local (5.2%) and barka breeds (4.91%) (χ²= 0.211, p = 0.036). However, no significant variation was observed with related to sex of cattle (p > 0.05). Heart (35.56%) was the most infected organ by large number of cysts followed by tongue (23.3 %), masseter muscle (14.4 %), tricept muscle (10 %), liver (8.8 %) and tight muscle (7.7%), respectively. In conclusion, results obtained from this study confirm that cysticercosis is a health problem in cattle in the study area. Therefore, it is necessary to establish appropriate strategy for prevention and controls.

KEYWORDS: Adigrat abattoir, Prevalence, Cattle, Cysticercosis bovis, Risk factors.

1 INTRODUCTION

Bovine cysticercosis is disease name given to the condition caused by the zoonotic tapeworm Tania saginata (T.saginata) [1]. The larval stage of T. saginata occurs in musculature of cattle while the adult stage occurs in intestine of man causing taeniasis. The life cycle of the parasite, T. saginata involves humans and cattle the final and intermediate hosts, respectively [2]. An infected animal releases gravid segments that are shed by the adult fall to ground and release eggs on the ground. Eggs are immediately infective when passed. Animals acquire infection from ingestion of segments and eggs contaminating herbage or in faeces commonly herbivores while grazing. Most incidents in cattle arise as a result of direct exposure to proglottids shed from farm workers, but there have been some reports of large scale outbreaks resulting from sewage-contaminated feed or forage [3]. The clinical effect of cysticercosis on infected animals is generally not significant but it is economically important as it causes carcass condemnation arising from heavy infestation with the cysticercosis of T. saginata as well as the cost of inspecting meat, the necessity to freeze or boil infected meat and losses may also occur from restriction of live animal and animal products [4]. In Ethiopian cysticercosis was identified as a major health problem and production losses in domestic ruminants. Several studies have been conducted on the epidemiological distribution of bovine cysticercosis in different parts of Ethiopia [5, 6, 7]. However, the prevalence of bovine cysticercosis with respect to host related risk factors is limited in Adigrat. Therefore, this study was undertaken to determine prevalence and associated risk factors of cysticercosis in cattle slaughtered at Adigrat municipal abattoir.

2 MATERIALS AND METHODS

2.1 STUDY AREA

The study was conducted from October 2012 to March 2013 in Eastern zone of Tigray, called Adigrat abattoir. The wereda has different agro-ecological areas namely sub moist dry, sub moist cool and sub dega. The annual rain fall ranges from 400-
600mm and the minimum and maximum temperature ranges from 6-21.8 °C with an altitude of 2000-3000 meter above sea level. In the study area the maximum rain fall occurs from mid June up to September and between March and May but the minimum rain fall occurs from April to May. The farming system is mixed farming system; crop cultivation and animal husbandry similar to that of most Ethiopian husbandry system [8].

2.2 STUDY ANIMAL

The study was conducted on 540 cattle slaughtered in Adigrat Municipal Abattoir which originates from neighboring localities and various grazing areas of the region. All the cattle breeds presented for slaughter were selected for the study by random sampling method. Most of the cattle’s were local breeds, while some are barks and holstine–fresian breeds.

2.3 SAMPLE SIZE

The required sample size was calculated according to [9].

\[n = \frac{z^2p(1-p)}{d^2} \]

Where, “n” is required sample size, “z” is standard value, “p” is expected prevalence and “d” is desired absolute precision. At 95% confidence interval \(z = 1.96 \) and \(d = 5\% \). Since no previous study was carried in the study area and the expected prevalence value was considered to be 50%. Accordingly, it was 384. However, to increase the level of accuracy of determining the prevalence the sample size was increased to 540.

2.4 STUDY METHODOLOGY

2.4.1 ANTE-MORTEM EXAMINATION

Three days visit per week was made for ante mortem and postmortem examination of slaughtered cattle. Age, breed, sex and body condition of each study animals was recorded on prepared format paper. Body scoring of the cattle was made based on the guideline provide by [10]. Each scoring were given number from 1 (L-, very lean) to 9 (F+, very fat) and finally included under three body condition scores poor, medium and good. Age determination was carried by means of their dentition as described by [11].

2.4.2 POST MORTEM EXAMINATION

After the cattle slaughtered, careful examination on the carcase of individual cattle was made through palpation of the organs followed by incision to examine for the presence *Cysticercus* cysts following the methods described by ministry of agriculture [12] as follows; the surface and substance of tongue was examined visually, following by longitudinal incision of the under surface. Each the masseter muscles (both left and right) was incised make cuts parallel to the jaw bone from the lower jaw. The pericardium and heart were examined visually and followed by incision lengthwise the left ventricle and intraventricular septum so exposing for examination of *C. bovis*. The muscles of diaphragm were examined visually and by making incision. Examination of kidney, liver, and the lung was also conducted accordingly. Cysts observed in theses organs were carefully dissected and numbers of cysts in each organ was recorded for each animal.

2.5 STATISTICAL ANALYSIS

Data were coded and stored in to Microsoft excel and analyzed by using SPSS version 20. The prevalence was calculated as the number of positive samples divided by the total number of examined samples. Chi-square (χ2) test was used to assess the association between the prevalence of *C. bovis* and host related risk factors such as sex, age, breed and body score of the animals. P value < 0.05 was considered as significant.

3 RESULTS

3.1 PREVALENCE OF CYSTICERCOSIS

The survey considered in this study reported that a total of 540 cattle were slaughtered in Adigrat municipal abattoir during the study period from October 2012 to March 2013. From the total examined cattle, 5.73% (29) were found to be infected with cysticercosis. Infection prevalence of cysticercosis was significantly associated with age, body condition and
breed of cattle. Infection rate of cysticercosis with respect to age group showed that higher prevalence was in cattle above 5 years (8.47%) than below 5 years (2.96%) ($\chi^2 = 7.949, p = 0.003$) and infection rate with respect to body condition revealed that the highest prevalence (13.5%) was in poor followed by medium and good body condition scores 4.6 and 1.66%, respectively ($\chi^2 = 23.1, p = 0.000$). Related to breed of cattle the highest prevalence (6.31%) was in Holstein-Friesian followed by local (5.2%) and barka breeds (4.91%) ($\chi^2 = 0.211, p = 0.036$). However, no significant variation was observed with related to sex of cattle ($p > 0.05$) (Table 1).

Table 1. Prevalence of C. bovis and related risk factors

<table>
<thead>
<tr>
<th>Category</th>
<th>No of examined</th>
<th>Prevalence (%)</th>
<th>χ^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5 years</td>
<td>304</td>
<td>9 (2.96)</td>
<td>7.949</td>
<td>0.003</td>
</tr>
<tr>
<td>> 5 years</td>
<td>236</td>
<td>20 (8.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>525</td>
<td>28 (5.338)</td>
<td>0.51</td>
<td>0.378</td>
</tr>
<tr>
<td>Female</td>
<td>15</td>
<td>1 (6.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>126</td>
<td>17 (13.5)</td>
<td>23.1</td>
<td>0.000</td>
</tr>
<tr>
<td>Medium</td>
<td>174</td>
<td>8 (4.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>240</td>
<td>4 (1.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barka</td>
<td>61</td>
<td>3 (4.91)</td>
<td>0.211</td>
<td>0.036</td>
</tr>
<tr>
<td>Holstine-Friesian</td>
<td>95</td>
<td>6 (6.31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local zebu</td>
<td>384</td>
<td>20 (5.2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heart (3.51%) was the most frequently infected organ followed by tongue (2.6%), masseter muscle (1.85%), tricept muscles (1.66%), liver (1.3%) and tight muscles (0.92%), respectively (Table 2). Anatomical distribution cysts in different organs revealed that the highest number of cysts were found from heart (35.56%) followed by tongue (23.3%), masseter (14.4%), tricept muscles (10%), liver (8.8%) and tight muscles (7.7%) (Table 2). No cyst was recorded from the lung and diaphragm.

Table 2. Distribution of C. bovis cyst in inspected organs

<table>
<thead>
<tr>
<th>Infected organ</th>
<th>No of positive (%)</th>
<th>Total cyst count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masseter</td>
<td>10 (1.85)</td>
<td>13 (14.4)</td>
</tr>
<tr>
<td>Tight muscles</td>
<td>5 (0.92)</td>
<td>7 (7.7)</td>
</tr>
<tr>
<td>Liver</td>
<td>7 (1.3)</td>
<td>8 (8.8)</td>
</tr>
<tr>
<td>Tongue</td>
<td>14 (2.6)</td>
<td>21 (23.3)</td>
</tr>
<tr>
<td>Triceps</td>
<td>9 (1.66)</td>
<td>9 (10)</td>
</tr>
<tr>
<td>Heart</td>
<td>19 (3.51)</td>
<td>32 (35.56)</td>
</tr>
<tr>
<td>Lung</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>64 (11.85)</td>
<td>90 (100)</td>
</tr>
</tbody>
</table>

4 **DISCUSSION**

The present study revealed that the overall prevalence of cysticercosis in cattle slaughtered at Adigrat municipal abattoir was 5.73%, which is comparable to the prevalence of 4.4% reported from Jimma [5], 7.5% from Addis Abeba [13], 8.2% from Tigray region [14], 6.7% from Kombolcha Abattoir [15]. However, it was higher than the reported prevalence of 3% in Zeway [16], 3.6% in Addis Abeba [17], 2.98% in Nekemte [6], and 2.93% in Jimma abattoir [18].

The prevalence of cysticercosis bovis in this study was relatively lower as compared with previous reports from different abattoirs of Ethiopia, such as 11.3% from Wolaita Soddo [19], 22.9% from Hawassa municipal abattoir [20], 26.25% from Southern Ethiopia [21] and from other countries 16% from Upper Egypt [22] and 72.2% from Nigeria [23]. The variation of prevalence in different study sites may be due to variations in personal and environmental hygiene, religion, culture and feeding habits of the population and their production systems [5]. The difference in prevalence rate could also attributed
due to the limitation of conventional method of meat inspection which is less sensitive to pick all animals that are infected with *T. saginata* metacestodes. Observations indicated that except for dead and degenerated cysts which form white and fibrotic lesions viable cysts pass to human consumption without being detected due to carless meat inspection as described [24].

In this study, animal greater than five years of age were highly infected. This finding is in agreement with the report of [25]. But, it was inconsistent with other works who found no significance variation in different age group of cattle [6, 17]. The increase in prevalence of cysticercosis with age may be explained due to the long cumulative exposure time of the animals to the different sources of infection with eggs of *T. saginata*. Animals with poor body condition were highly infected with *C. bovis* than those with medium and good body condition scores. As [6] explained it is easier to detect cysts from emaciated carcass and organs as compared to well conditioned animals.

The result of this study showed that the highest prevalence was found in Holstine – Fresian breed cattle. [3] reported roughage feed components such hay and crop by-products which purchased from unknown locations may serves as source of *T. saginata* eggs as they contaminate with human waste during harvesting and collection time. This lower prevalence of cysticercosis in local breeds could be explained that, locally adapted breeds are more resistant to parasitic diseases infections as described by [27]. This result was inconsistent with finding of [13] from Addis Ababa abattoir and [24] from Iran, who reported high prevalence of cysticercosis in local breeds. This may be associated with management system where local breeds have greater chance to contaminated pasture with human excreta.

Prevalence of *C. bovis* in this study was not affected by sex of the animals. This is in agreement with previous reports [13, 15, 16, 24]. This could be associated with similar management given to both male and females cattle. In communal system both sexes were grazing on the same pastures and thus exposed to similar challenge with *T. saginata* eggs. In the study, female cattle examined for cysticercosis were small in number which makes difficulty to correlate prevalence with the sex of animals. However, according to [17, 26] males were highly infected than females. This may be related to management system of longer exposure of male outdoor, while females are kept in door at the beginning of lactation and breeding.

In this study heart (3.51%) was the most frequently infected organ. This result is in agreement with other study conducted by [22, 26]. However, [5, 28] reported that tongue was the most infected organ. In the present study, highest number of cysts was found from heart (35.56%) followed by tongue (23.3%) and masseter muscles (14.4%). In the present study small number of cysts was in tight muscles (7.7%). This could be due to the practical limitation of meat inspection, as deep incision lower marketability of the owners don’t allow multiple incision of the carcass. The variation in the predilection seats may be also attributed to management practices of the animals like using the cattle in the daily agricultural activities which influence the distribution of the cysticerci [26]. In Ethiopia bush defecation, habit of eating raw beef (kitfo, Kourte, Gored-Gored) and village slaughter might have contributed much for the increase in prevalence of cysticercosis in cattle.

5 CONCLUSION AND RECOMMENDATION

The study demonstrated that cysticercosis is a major health problem in cattle of the study area. Appropriate control strategies should be design to reduce the transmission and educational awareness of the society on avoiding consumption of raw meat and proper use of latrine with improved standard of human hygiene were recommended.

ACKNOWLEDGEMENTS

The authors extend their sincere gratitude to Veterinarian team of Adigrat municipal abattoir for their cooperation during the study.

REFERENCES

[8] GBOANR, Ganta afeshum bureau of agriculture and natural resource.1999

