
International Journal of Innovation and Scientific Research 
ISSN 2351-8014 Vol. 13 No. 1 Jan. 2015, pp. 89-97 
© 2015 Innovative Space of Scientific Research Journals 
http://www.ijisr.issr-journals.org/ 

 

Corresponding Author: Peter Nimbe 89 
 

 

Hashing String Keys Using NFO and NOF Collision Resolution Strategies 

Peter Nimbe
1
, Michael Opoku

1
, and Samuel Ofori Frimpong

2
 

1
Department of Computer Science,  

K.N.U.S.T,  
Kumasi, Ghana 

 
2
Department of Computer Science, 

C.U.C.G, 
Sunyani-Fiapre, Ghana 

 
 

 
Copyright © 2015 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 
 

ABSTRACT: This paper presents the systematic way of hashing string values using NFO and NOF collision resolution strategies. 

NFO and NOF are techniques used for hashing numeric keys. The same principles and techniques for hashing numeric keys 
are deployed in the hashing of string values but with slight modifications in the hashing process and implementations. These 
variants followed the standard ways of evaluating and implementing algorithms to resolve collisions in hash tables. They are 
very effective in resolving the problem of collisions of string keys or values in the same slot of a hash table. 

KEYWORDS: NFO Strategy, NOF Strategy, Hash Function, Hash Tables, Collision Resolution, ASCII Value, Algorithm. 

1 INTRODUCTION 

NFO and NOF are collision resolution strategies to be reviewed in this paper. They play a vital role in the results, analysis 
and discussions. Over the years, various collision resolution techniques have been developed. The goal of collision resolution 
is to find a free slot in the hash table when the home position for the key is already occupied. The various collision resolution 
strategies generate a sequence of hash table slots that can hold a value or key. A probe function is used by any collision 
strategy or policy to generate probe sequences (sequence of slots) for keys to occupy. The collision resolution policy 
generates a next slot if the home position is occupied. If this is occupied as well, then another slot must be found, and so on. 
The ideal behavior for a collision resolution mechanism is that each empty slot in the table will have equal probability of 
receiving the next record inserted (assuming that every slot in the table has equal probability of being hashed to initially). Its 
probe sequence should be able to cycle through slots in the hash table before returning to the home position [1]. 

1.1 NFO  STRATEGY 

NFO is a dot strategy technique for collision resolution based on single dimensional arrays. The dot feature which is 
incorporated as part of the implementation of this technique helps in the placement of numeric key values in appropriate 
slots of the bucket array or hash table after they have been hashed. It is very efficient storage-wise, and does not require use 
of 3 state flag in cells. This technique has no primary clustering, no long probe sequences and no deterioration in hash table 
efficiency. Collision resolution is very efficient. Tracking an element and its slot number is made very easy by means of the 
dot feature. It has a running time of O(n

2
) [2]. 

 

 



Hashing String Keys Using NFO and NOF Collision Resolution Strategies 

 

 

ISSN : 2351-8014 Vol. 13 No. 1, Jan. 2015 90 
 

 

1.2 NOF STRATEGY 

NOF is a technique for collision resolution based on multidimensional arrays (n x n array). It was discussed that an n x m 
array is used for better and more efficient implementations. In this case, n is equal to the number of rows and m is equal to 
the number of columns. The use of the multidimensional array ensures that elements are placed in appropriate slots by 
matching each of the slot numbers with a specific row of the multidimensional array. The primary issue of concern of this 
technique is that there are unutilized empty spaces or slots which makes the scheme not efficient storage-wise. Despite this 
concern, it is proven to be very effective in collision resolution. In the implementation of NOF, a further and better 
representation of the array size which was trimmed down or resized enhanced the space utilization though it could not 
eliminate it completely. An optimal implementation of the above technique is to remove or deallocate the empty spaces. 
Tracking an element and its slot number is made very easy by means of the multidimensional array. It has a running time of 
O(n

2
) [3]. 

2 MATERIALS AND METHODS 

Secondary data was used for the analysis basically from literature, journals, websites, and lecture notes. The Variants of 
NFO and NOF algorithms for string hashing were implemented in C++ programming language using Dev-C++ IDE. The 
concepts of single and multi-dimensional arrays were adopted in this paper just as in the ones for numeric keys. 

3 RESULTS 

The variants are implemented using C++ programming language. Further illustration is given with respect to how the 
algorithms function.  

3.1 C++ IMPLEMENTATION USING NFO 

#include<iostream> 

#include<iomanip> 

using namespace std; 

int main() 

{ 

 int size, chk, sum; 

 string key=""; 

 

 cout<<"please specify the size of hash table:"; 

 cin>>size; 

 double h[size],  val=0.0; 

 

 for(int i=0;i<size;i++) 

 { 

  cout<<"please enter the keys to be hashed:"; 

  cin>>key; 

 

     sum=0; 

  for(int d=0;d<key.length();d++) 

          sum=sum+int(key[d]); 



Peter Nimbe, Michael Opoku, and Samuel Ofori Frimpong 

 

 

ISSN : 2351-8014 Vol. 13 No. 1, Jan. 2015 91 
 

 

 

  chk= val = sum; 

 

  while(chk>0) 

  { 

   chk/=10; 

   val*=0.1; 

  } 

  h[i]=(sum%size)*1.0+val; 

 } 

 

 cout<<endl; 

         cout << std::fixed; 

 for (int i=0;i<size;i++) 

  cout<<i<<setw(7)<<setprecision(3)<<h[i]<<"\n"; 

 

 cout<<endl; 

    system("pause"); 

 return 0; 

} 

3.2 C++ IMPLEMENTATION USING NOF 

#include<iostream> 

#include<iomanip> 

#include<string> 

using namespace std; 

int main() 

{ 

 int  size, rem=0, j=0, val=0; 

 bool assign; 

    string key=""; 

 

 //Accepting the size of the hash table 

 cout<<"Please specify the size of hash table:"; 

 cin>>size; 

 int h[size]; 

 string arr[size][size]; 



Hashing String Keys Using NFO and NOF Collision Resolution Strategies 

 

 

ISSN : 2351-8014 Vol. 13 No. 1, Jan. 2015 92 
 

 

 

 //Initializing the array 

 for(int a=0;a<size;a++) 

  for(int b=0;b<size;b++) 

   arr[a][b]="0"; 

 

 //Accepting the keys, hashing and placing them in appropriate location in array 

 for(int i=0;i<size;i++) 

 { 

  cout<<"Please enter the keys to be hashed:"; 

  cin>>key; 

 

  val=0; 

  for(int d=0;d<key.length();d++) 

          val=val+int(key[d]); 

 

  rem=val%size; 

  j=0; 

  assign=false; 

 

    do 

    { 

     if(arr[rem][j]=="0") 

     { 

      arr[rem][j]=key; 

      assign=true; 

     } 

     else 

      j++; 

 

    }while(assign==false); 

 } 

 

 cout<<endl; 

 

 //Displaying the contents of the array 

 for(int a=0;a<size;a++) 



Peter Nimbe, Michael Opoku, and Samuel Ofori Frimpong 

 

 

ISSN : 2351-8014 Vol. 13 No. 1, Jan. 2015 93 
 

 

 { 

  cout<<a; 

  for(int b=0;b<size;b++) 

   if(arr[a][b]!="0") 

    cout<<"  "<<arr[a][b]; 

  cout<<endl; 

 } 

 

 cout<<endl; 

 system("pause"); 

 return 0; 

} 

3.3 BIG O NOTATION 

Big O-Notation Time Efficiency Analyses for Variant of NFO 

T(N) =  O(N) [O(1) + O(N)(O(1))  + O(1)  + O(N)[O(1) + O(1)] + O(1)] + O(N) 

T(N) =  O(N) [O(1) + O(N) + O(1) + O(N) + O(N) + O(1)] + O(N) 

T(N) =  [O(N) + O(N
2
) + O(N) + O(N

2
) + O(N

2
) + O(N)] + O(N) 

T(N) =  [O(N
2
) + O(N

2
) + O(N

2
) + O(N) + O(N) + O(N) + O(N)] 

As N→ ∞ all constants can be ignored  

T(N) ≈ [O(3N
2
) + O(4N)] 

In this case as N becomes very large O(N
2
) is considered the most significant factor of the Big O-Notation obtained from 

the above T(N) deductions. Hence in the worst case scenario the algorithm’s time efficiency complexity can be measured by 
T(N) = O(N

2
) 

 

Big O-Notation Time Efficiency Analyses for Variant of NOF 

T(N) =  [O(N)(O(N)+O(1))] +  [O(N)(O(1) + O(N)(O(1)) +O(1) + O(1) + O(1) + O(N)(O(1)+O(1)+O(1))] + [O(N)(O(N))] 

T(N) =  [O(N
2
) + O(N)] + O(N) + O(N) + O(N

2
)(O(1))+O(N)+O(N)+ O(N)) + O(N

2
)+O(N

2
)+O(N

2
)) + O(N

2
)] 

T(N) =  [O(N
2
) + O(N) + O(N) + O(N) + O(N

2
) + O(N) + O(N) + O(N) + O(N

2
) + O(N

2
) + O(N

2
) + O(N

2
)] 

T(N) =  [O(N
2
) + O(N

2
) + O(N

2
) + O(N

2
)+ O(N

2
) + O(N

2
) + O(N) + O(N) + O(N) + O(N) + O(N)  + O(N)] 

As N→ ∞ all constants can be ignored  

T(N) ≈ [O(6N
2
) + O(6N)] 

In this case as N becomes very large O(N
2
) is considered the most significant factor of the Big O-Notation obtained from 

the above T(N) deductions. Hence in the worst case scenario the algorithm’s time efficiency complexity can be measured by 
T(N) = O(N

2
) 

3.4 ILLUSTRATION 

Step by step operations are outlined using the variants of NFO and NOF. The string elements to be hashed are mellon, 
tomato, orange, potato, okra, carrot, banana, olive, salt, mushroom, onion, cabbage and cucumber. The ASCII values of the 



Hashing String Keys Using NFO and NOF Collision Resolution Strategies 

 

 

ISSN : 2351-8014 Vol. 13 No. 1, Jan. 2015 94 
 

 

characters in the string elements will be used in the computation process. The various characters and their ASCII code is 
given below [4]. 

Table 1. Characters and their ASCII Code 

Character a b c d e f g h i j k l m 

ASCII 
Code 

97 98 99 100 101 102 103 104 105 106 107 108 109 

 

Character n o p q r s t u v w x y Z 

ASCII 
Code 

110 111 112 113 114 115 116 117 118 119 120 121 122 

3.4.1 NFO 

The hash function is given by h(x) = x%13, where x is the sum of all the ASCII values for the characters in a particular      
string. The value 13 here represents the size or number of slots of the bucket array. 

For the 1
st

 Element 

h(mellon) = (109 + 101 + 108 + 108 + 111 + 110) % 13 = 647 % 13 = 10 

This implies the 1
st

 element will be stored in slot 10 of bucket array. 

 

For the 2
nd

 Element  

h(tomato) = (116 + 111 + 109 + 97 + 116 + 111) % 13 = 660 % 13 = 10 

This implies the 2
nd

 element will be stored in slot 10 of bucket array. 

 

For the 3
rd

 Element  

h(orange) = (111 + 114 + 97 + 110 + 103 + 101) % 13 = 636 % 13 = 12 

This implies the 3
rd

 element will be stored in slot 12 of bucket array. 

 

Applying the same process above the table below is generated: 

Table 2. String elements, sum of ASCII values of the characters and slots 

 Element X h(x) 

1. mellon 647 10 

2. tomato 660 10 

3. orange 636 12 

4. potato 663 0 

5. Okra 429 0 

6. carrot 651 1 

7. banana 609 11 

8. olive  543 10 

9. Salt 436 7 

10. mushroom 890 6 

11. Onion 547 1 

12. Cabbage 693 4 

13. Cucumber 854 9 

 



Peter Nimbe, Michael Opoku, and Samuel Ofori Frimpong 

 

 

ISSN : 2351-8014 Vol. 13 No. 1, Jan. 2015 95 
 

 

Table 3. Hash Table Representation (NFO) 

 

 

 

 

 

 

 

 

 

 

 

The snapshot below is the results displayed after the hashing of the string elements using the NFO technique. 

 

 

Fig. 1. Output from a Console (NFO) 

ANALYSIS 

Assuming we have two string values to be hashed i.e. “abc” and “bac”. This will return the same slot number after the 
hashing process is complete. The numeric representations of the string is then kept in the hash table. The question therefore 
is which of the values is “abc” or “bac”? The answer is any of them could be “abc” or “bac” and does not really make any 
difference if any of them is presented as “abc” or “bac”. All that needs to be done in searching for a string element is to 
compute the sum of the ASCII values of the characters in the string and searching through the hash table for that value. 

 

0 10.647 1
st

 Element 

1 10.660 2
nd

 Element 

2 12.636 3
rd

 Element 

3 0.663 4
th

 Element 

4 0.429 5
th

 Element 

5 1.651 6
th

 Element 

6 11.609 7
th

 Element 

7 10.543 8
th

 Element 

8 7.436 9
th

 Element 

9 6.890 10
th

 Element 

10 1.547 11
th

 Element 

11 4.693 12
th

 Element 

12 9.854 13
th

 Element 



Hashing String Keys Using NFO and NOF Collision Resolution Strategies 

 

 

ISSN : 2351-8014 Vol. 13 No. 1, Jan. 2015 96 
 

 

Table 4. Hash Table Representation (NOF) – n x m array 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The snapshot below is the results displayed after the hashing of the string elements using NOF technique. 

 

 

Fig. 2. Output from a Console (NOF) 

 

 

0   potato okra  

1   carrot onion  

2      

3      

4   cabbage   

5      

6   mushroom   

7   salt   

8      

9   cucumber   

10   mellon tomato olive 

11   banana   

12   orange   



Peter Nimbe, Michael Opoku, and Samuel Ofori Frimpong 

 

 

ISSN : 2351-8014 Vol. 13 No. 1, Jan. 2015 97 
 

 

3.5 COMPARATIVE ANALYSIS 

  NFO NOF 

1. Array type Single dimensional Multi-dimensional 

2. Storage-wise Efficient Not efficient 

3. Keys type hashed Numeric and string  Numeric and string 

4. Technique Dot Chain 

5. Running Time O(N
2
) O(N

2
) 

4 DISCUSSION 

There are a number of collision resolution strategies in hash tables which have been used for numeric and string value 
hashing. This paper shows the step by step process involved in hashing string values or keys into appropriate slots of a bucket 
array. Even though there have been slight modification or variations to the codes or implementations, the technique and 
processes are identical. The major concepts used in NFO and NOF strategies for numeric key hashing is basically the same for 
string key hashing. It could be seen that the strategies can be used for hashing string values as well. It is strongly believed 
that the work of NFO and NOF will not have been complete if it was unable to hash string values. Whilst NFO and NOF has 
been proven to be very efficient there are some problems associated with them just like any other collision resolution 
strategy. This paper intended to demonstrate how these 2 collision resolution strategies could be used on string values. It has 
been successful in terms of hashing string keys and will makes an authentic contribution to the field of data structures and 
computational theory. 

5 CONCLUSION  

NFO and NOF collisions are also very efficient for string value hashing just like in the case of numeric key values. It is 
earnestly hoped this paper will add to the body of knowledge due the proven nature of the two strategies to handle collision 
problems of both numeric and string values. The adoption of these techniques for hashing either numeric and string values or 
keys will help minimize high overhead incurred as a result of collision. Future works will be to design collision resolution 
strategies using other data structures. 

ACKNOWLEDGMENT 

It has been God‘s grace and revelation that this paper has been completed. All praises and gratitude is given unto God. 
Amen! Families and Friends are acknowledged for their encouragement and unyielding support. Reviewers and experts are 
also shown gratitude for their assessments, contributions and comments towards this paper. 

REFERENCES 

[1] Shaffer, C.A., “Hashing Tutorial - Collision Resolution”, 2011 
[2] Nimbe, P., Frimpong, S.O., Opoku, M., “An Efficient Strategy for Collision Resolution in Hash Table”, International 

Journal of Computer Applications, Volume 99 – No. 10, August 2014, pp. 35-41. 
[3] Nimbe, P., Opoku, M., Frimpong, S.O., Asante, A., Kornu, D., “Hash Table Collision Resolution Using a Multi-dimensional 

Array”, International Journal of Innovation and Scientific Research, Vol. 9 No.2, Sep. 2014, pp. 258-267. 
[4]  Jauhar, A., “Hashing: Collision Resolution Schemes”,  2008 

 


