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ABSTRACT: Boosting is the general method which converts any weak learning algorithm into strong learner in order to 

improve the accuracy. The limitations in boosting is overfitting on the training data and filtering out the correct data in the 

subsequent function since boosting concentrates on regions not predicted well by other learners. So, the cluster based 

boosting (CBB) approach is used to address limitations in boosting. In this paper, initially X-Means algorithm is used to cluster 

the data and the clusters are selectively boosted based on the additional structure information provided by clusters and 

previous function accuracy on the member data. To apply Cluster Based Boosting to the high dimensional data, 

dimensionality reduction technique is performed. In this paper, we apply Global Redundancy Minimization frame work which 

considers the redundancy of the feature with all other features. The selected features will contribute more mutual 

information for prediction. This frame work can be used with any other feature selection technique. We provide 

experimental results on various dataset. These results demonstrate the effectiveness of Global redundancy framework and 

also effectiveness of Cluster Based Boosting with Global redundancy minimization framework than classifier with global 

redundancy minimization framework.   
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1 INTRODUCTION 

Boosting is a method to improve the accuracy of any given machine learning algorithm.  For supervised learners, to find a 

highly accurate prediction rule is certainly a difficult task. To overcome this, boosting is used. Since boosting is an iterative 

process and each time when it calls the base learning algorithm, it generates a new weak prediction rule, and after several 

rounds, the boosting algorithm must combine these weak rules into a strong prediction rule. This rule will be much more 

accurate than any one of the weak rules generated [1], [2]. 

In spite of its success, boosting such as adaboost has various problems [3]. They are (1) Training data contains label noise - 

where the labels of the instances provided are actually wrong (2) Training data with troublesome areas- where the relevant 

features of the instances are different from the rest of the training data and (3) Filtering out the data in subsequent functions 

when the training data contains troublesome areas and/or label noise. 

In boosting, every learner covers the complete training data. The learners are dependent of one another and are biased 

towards the data that are wrongly predicted in the previous iteration. When the training data contains label noise then the 

boosting learning function fails to learn correctly. Though initial function is correct, boosting does not realize that the labels 

were wrong. Thus, boosting focuses subsequent functions on learning how to “correctly” predict these instances assuming 

that the wrong labels provided are correct [4], [5]. 

In boosting, overfitting occurs due to overlapping regions. The samples that are located in the overlapping region are 

more likely to be misclassified. Adaboost works by increasing the weight of samples that are misclassified in the previous 

iterations [2]. In our work we regard the overlapping regions as heterogeneous.  

Another problem with boosting is due to the way it learns the subsequent function. Boosting works by filtering out some 

correctly classified instances and withheld the incorrect instances in the subsequent iterations. This can result in complexity 
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and higher probability of overfitting because some correctly predicted instances may be similar to the incorrectly classified 

instances in the heterogeneous region [6].   

To address the limitations of boosting, we propose a novel approach called cluster based boosting (CBB). CBB uses 

clusters to partition data and then the boosting is applied on the clusters containing highly similar data which helps to reduce 

the complexity and to mitigate the overfitting [6]. 

To apply cluster based boosting to high dimensional data, dimensionality reduction is performed on the original data.  The 

microarray and gene expression data suffers curse of dimensionality issue where the number of samples is much less than 

the number of feature which leads to overfitting of data. 

In feature extraction two or more features combined to form a new feature. When the features have natural meaning 

they cannot be combined. Hence feature selection becomes important.  

In feature ranking correlated features tend to get similar rankings, as they are considered equally significant for 

classification. As a result, the top ranked features obtained are often correlated to each other. From statistics point of view, 

these correlated features provide redundant information and may not introduce any extra useful information. 

In mRMR, redundancy between selected features is considered. However, it is not optimal because it considers only the 

local redundancy but not the global redundancy [7], [8]. 

In this work, we use Global Redundancy Minimization (GRM) framework [9] which considers the redundancy of a feature 

with all other feature. It globally minimizes feature redundancy with maximizing the ranking scores. The selected features will 

contribute more information to the latent variable and minimum global redundancy. The feature ranking results of any 

supervised or unsupervised feature selection method can be used as the input of GRM framework.  

We evaluate GRM using two studies. First, we compare feature selection with GRM based feature selection in classifiers. 

Second, we compare feature selection with GRM based feature selection in Cluster Based Boosting technique. 

The rest of this paper is organized as follows. Section 1 provides the background on feature selection, boosting and 

related work on using clustering and boosting. Section 2 provides a more in-depth discussion on the boosting problems, how 

our CBB approach addresses these problems and CBB in high dimensional data. Section 3 provides the experimental setup 

and discusses the results from our studies. Section 4 concludes and discusses future work. 

2 LITERATURE SURVEY 

In this work, we provide the related works on boosting and margin theory and also the combination of boosting and 

clustering. The two methods of boosting are boosting by resampling and boosting by reweighting. Boosting by reweighting 

can be applied only to supervised learners that are designed to use instance weights while boosting by reweighting can be 

applied to all supervised learners. Hence boosting by resampling is much more appropriate. A new training dataset same as 

size of original dataset is created where the probability that each instance is selected is directly proportional to its assigned 

weights [10]. 
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Fig. 1. System Architecture 

2.1 BOOSTING AND MARGIN THEORY 

In margin theory, Schapire et al. [11] made an attempt to explain boosting by considering the margin. The margin of an 

instance is a good indicator of classification confidence and confidence in the prediction of multiple functions. The margin on 

a single data instance depends on the weighted votes for multiple functions. In turn, the magnitude of the margin represents 

the strength of agreement between those functions and the confidence of the final decision boundary. Using these margins, 

it is possible to prove that predictive accuracy continues to increase with the number of boosting iterations explaining 

resistance to overfitting. Further extensions to margin theory have examined how the margin distribution (including margin 

average and variance) is connected to the predictive accuracy 
[12]

. The authors show how, by learning additional subsequent 

functions, boosting continues to improve the margin resulting in a more refined decision boundary (with higher predictive 

accuracy).  

2.2 COMBINATION OF CLUSTERING AND BOOSTING 

Here we provide related works on the combination of clustering and boosting. The three ways are (1) Boosting is used to 

improve clustering, (2) Boosting and clustering to improve any given supervised machine algorithm and (3) Clustering to 

improve boosting which is similar to our work. 

There has been very little work on how clustering improves boosting. In kim et al [13] uses k-means clustering algorithm 

to address the label noise problem in boosting. K-Means clustering algorithm is applied to training data and each clusters is 

compared with the cluster in the opposite class using the mahalanobis distance. When the clusters belongs to different 

clusters are close enough they are pruned. Then, boosting is done on the remaining training data. We refer this as prune 

boost algorithm. This algorithm does not explain about various issues such as subsequent function ignoring troublesome 

areas and subsequent function that are complex. Cluster Based Boosting technique addresses this issue. To apply Cluster 

Based Boosting technique in high dimensional data, feature selection should be done. 
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2.3 FEATURE SELECTION 

Feature selection is to select informative and relevant features from the high-dimensional space. It plays a crucial role in 

many practical applications. Feature selection can speed up the learning process and decrease the algorithm running time in 

the real applications. 

Based on the training set, feature selection algorithms can be categorized into supervised, semi-supervised and 

unsupervised. Again, supervised feature selection methods can further be categorized into filter models, embedded models 

and wrapper models. 

The filter model [14] separates feature selection from classifier so that the bias of a learner does not interact with the 

bias of a feature selection algorithm. Relief, Fisher score and Information Gain based methods are some of the frequently 

used algorithms of the filter model. 

The wrapper model [15] uses the predictive accuracy of a predetermined learner to determine the quality of selected 

features. The wrapper method works better than the filter method but it is expensive than filter model and is not suitable for 

the large scale data. To bridge this gap embedded method is introduced. 

The top ranked features are correlated and they will not introduce any extra useful information. In previous research, 

Ding et al. recognized this issue and proposed the minimum Redundancy Maximum Relevance Feature Selection (mRMR) 

model [7] [8] to minimize the redundancy. However it is greedy search and the global redundancy is not considered. To 

address this issue Global Redundancy Minimization framework is used which considers redundancy with all other features. 

3 METHODOLOGY 

In this section we first provide a more detailed discussion on boosting problem. Then we discuss our cluster based 

solution. 

3.1  ISSUES IN BOOSTING 

Here we further provide various issues on the boosting such as filtering out correct instances in subsequent functions and 

label noise. 

3.1.1 FILTERING IN SUBSEQUENT FUNCTION 

The first limitation of boosting is filtering the correctly predicted instance that is required to learn actual decision 

boundary which makes them unavailable for subsequent functions. Such filtering becomes problematic when training data 

contains troublesome areas.  

 

Fig. 2. Example of how filtering affects subsequent function given troublesome (A1 and A2) and normal (B1 and B2)   areas. 

(a) After learning the initial function (b) after learning a subsequent function, and (c) boosting prediction 

To illustrate this phenomenon Fig. 2 provides an example how filtering affects subsequent function. Areas A1 and A2 are 

troublesome areas. The red shaded region represents the positive instance and green shaded represents the negative 

instance and grey shaded regions are missed out samples while the x encircled are wrongly classified instance. In fig.2a 

vertical line represents the decision boundary which partitions the positive and negative class. This decision boundary 
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correctly predicts some instances in the troublesome area. In fig. 2b consider the grey shaded regions as missed out samples. 

These grey shaded regions are correctly predicted instance which is filtered in the subsequent function. Due to this there is 

change in the decision boundary. At first this seems to be working fine because the acc(f1) is less than the acc(f2) but f2 fails 

to learn properly due to missed out samples. 

Fig. 2c shows the weighted vote from both functions to predict the final label. f2 gets higher weightage than f1 because of  

higher accuracy achieved. The final decision boundary predicts the correct label for all the instances in areas B1 and B2 but is 

wrong on half of the instances in troublesome regions. The boosting has difficulty because neither function learns about 

troublesome areas. 

3.1.2  OVERFITTING IN SUBSEQUENT FUNCTION 

Learning subsequent functions on widely separated instances requires complex functions. These functions have higher 

accuracy and results in overfitting of subsequent function. The function with higher accuracy gets a higher weightage. This 

overfitting is propagated final decision since those overfitted function will have higher accuracy and higher weightage [16]. 

3.2 CLUSTER BASED BOOSTING IN HIGH DIMENSIONAL DATA 

Here we further discuss our cluster based boosting solution in high dimensional data. First the feature selection is 

performed on the training data. In GRM framework, the squared cosine similarity matrix is constructed. Then the feature 

score s is computed using any supervised feature selection algorithm. The refined feature score z is obtained by applying the 

GRM framework [9] solving the objective function (1). Now the top k features are selected. 

Min    where z
T
1=1; z>=0                                                                       (1) 

The function z
T
Az represents the global feature redundancy in the refined feature ranking. z

T
s represents the consistency 

between the refined feature score z and the original score s. The correlation matrix A must be positive semidefinite. If it is 

not positive semidefinite then it leads to nonconvex problem and global optimum cannot be achieved. In contrast the 

positive semidefinite is guaranteed by squared cosine similarity. 

Now the selected training data is decomposed into clusters which encapsulate highly similar instances in same cluster. X-

Means, the modified version of k-means [17] is used for clustering. The goal of x-means is to assign each instance to each 

cluster that minimizes following function. X-Means learns the appropriate number of clusters automatically [18] by increasing 

the cluster count till it achieves lowest Bayesian information criterion (BIC) [19] value. 

BIC( πc ) = |x| ln σ2 + k ln |x|                                                                      (2) 

After clustering, CBB performs selective boosting based on the cluster type. After selective boosting, the set of functions 

is assigned the weighted vote and used to predict the labels for a new instance. Weighted vote is calculated using the 

following function [20]. 

Vote (ft) = η ln((1-ε) / ε )                                                                              (3) 

The cluster type is computed using the localized estimate metric and the minority label estimate (MLE) metric. The 

localized estimate metric is used to find whether the cluster is struggling or prosperous.  

Localized Estimate (πc) =  ���������	
	��	
��	(�,ᴨ�)����	������

��	
,�� ��!��� "                                                   (4) 

Where acc	(F, ᴨ&) is the accuracy of the previous function evaluated on the cluster members. '� is the tunable 

parameter and the value ranges from 0.1 to 0.3.The minority label estimate is used to find whether the cluster is 

heterogeneous or homogeneous. 

Minority Label Estimate (πc) =         �(�)�
�	����	��	)�	����*	(ᴨ�)	+	�,(�����
�	����,�� ��!���. "                                          (5) 

Where minority	(ᴨ5)	is the minority label percentage on the cluster members and '6 is the tunable parameter and the 

value ranges from 0.2 to 0.4. If the cluster is Heterogeneous Struggling (HES), high-eta boosting has a learning rate for 

AdaBoost (η=1). Otherwise, if the cluster is Heterogeneous Prospering (HEP), low-eta boosting has a learning rate for 

AdaBoost (η=.5). Otherwise, if the cluster is Homogeneous Struggling (HES), a single function is learned without boosting. No 

functions are learned if the cluster is Homogeneous Prospering (HEP) to avoid learning label noise. 
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4 IMPLEMENTATION 

4.1 DATASET DESCRIPTION 

LUNG data set contains 203 samples. These samples are from five classes, which have 17, 20, 6, 21, 139 samples, 

respectively. 3,312 genes are retained after excluding genes whose standard deviation are smaller than 50 expression units. 

AMLALL data set comprises of 72 samples, in which 25 subjects are acute myeloid leukemia (AML) and 47 subjects are 

acute lymphoblastic leukemia (ALL). Every sample contain 7,219 gene expression values. 

LEU data set comprises of 72 samples of which some are leukemia patients. The data set has 3,571 gene descriptors. 

GLIOMA data set contains 50 samples. These are from four classes, which have 14, 14, 7, 15 samples. Each sample 

contains 4,434 genes. 

ProCancer data set contains 89 samples. Each sample contains 15,154 genes. The data set contains two class normal and 

prostate cancer. 

Synthetic data set comprises of 400 samples with 100 features. It has two classes. 

Table 1. Data Sets Description 

 # OF CLASS # OF FEATURES # OF SAMPLE 

LUNG 5 3,312 203 

AMLALL 2 7,219 72 

LEU 2 3,571 72 

GLIOMA 4 4,434 50 

PROCANCER 2 15,154 89 

SYNTHETIC 2 100 400 

4.2 EXPERIMENTAL SETUP 

The GRM framework is applied the supervised feature selection algorithms such as on ReliefF (RF), Fisher score (Fscore) 

and information gain (IG). Fisher score is one of the most simple but effective supervised feature selection method. Features 

with large between-class distance and small within-class distance are preferred by Fisher score method. ReliefF is another 

representative filter method. The weight of each feature increases if it differs from nearby instances of the other class more 

than nearby instances of the same class. Information gain measures the reduction of entropy for each feature. 

The selected features are given into the cluster based boosting which uses SVM and KNN as classifiers. For each feature 

selection method, five-fold cross-validation is used to evaluate the performance. The following evaluation metric to measure 

the redundancy in selected features: 

�
7(7��)∑ 9:,;<=<>	∈@,:A;                                                                             (6)                         

Where S is the set of selected features, m is the number of selected features, fi, fj are the features, Aij  is the squared 

cosine similarity defined in the GRM framework. Aij is positive semidefinite to avoid non-convex problem and to obtain the 

global optimum solution. 

4.3 GRM FRAMEWORK FOR CLUSTER BASED BOOSTING 

Different supervised feature selection algorithms are used to select the top k features. Their redundancy estimation, 

boosting accuracy are discussed below. 

4.3.1 REDUNDANCY ESTIMATION: 

GRM based ReliefF (GRF), GRM based Fishers Score (GFScore) and GRM based Information Gain (GIG) gives the value of 

refined score. This is obtained by applying ReliefF, Fishers Score and Information Gain in GRM Framework.  
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From fig. 3 we can infer that the redundancy of GRM based ReliefF is much higher than ReliefF. It is clearly shown in Lung, 

AMLALL and LEU dataset that the redundancy of GRM based ReliefF is much lower than ReliefF. 

 

 

Fig. 3. Redundancy of top 20 features selected by ReliefF and GRM based ReliefF 

 From fig. 4 we observe that the redundancy of Fishers Score is higher than the GRM based Fishers Score. By comparing 

with fig. 3 and fig. 5 we observe the redundancy of Fisher Score is higher than other two supervised algorithms. This is clearly 

shown by Lung and AMLALL data set. 

  

 

Fig. 4. Redundancy of top 20 features selected by Fishers score and GRM based Fishers score 
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Fig. 5. Redundancy of top 20 features selected by Information Gain and GRM based Information Gain 

Fig. 5 records the redundancy of Information Gain and GRM based Information Gain. On all the dataset the redundancy of 

GIG is much lower than Information Gain.  

The reason for the decrease in redundancy in all GRM based supervised algorithm is the features that are globally 

redundant are expected to get lower refined score z and thus not included in final subset of features. 

4.3.2 CLASSIFICATION ACCURACY ESTIMATION 

In this study, we compare the performance of top 20 features selected by different supervised feature selection algorithm 

in terms of accuracy. Support vector machines and K-Nearest Neighbor are the classifiers used. 

 From table 2 and table 3 we can observe that the features selected by GRM based RF, GRM based IG and GRM based 

Fishers Score performs better than RF, IG and FScore respectively on all the dataset. Especially on Lung data set the increase 

in accuracy shows the effectiveness of GRM framework which reduces the redundancy between the selected subset of 

features and they are expected to be more discriminant. 

Table 2. Five cross validation performed on SVM 

 RF GRF F 

score 

GF 

score 

IG GIG 

LUNG 78.42 89.67 78.42 95.17 78.42 95.64 

AMLALL 85.89 88.93 91.61 97.14 93.04 95.54 

LEU 94.46 95.21 92.57 93.04 95.71 95.89 

GLIOMA 62.00 68.00 60.00 64.00 58.00 64.00 

ProCancer 91.05 93.33 93.14 97.78 94.21 96.67 

Synthetic 94.75 95.00 94.25 95.50 94.25 95.00 

 

By comparing the table 2 and 3, the top 20 features selected by Information Gain after applying GRM framework 

performs better than all other supervised feature selection algorithms. 
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Table 3. Five Cross Validation Performed On KNN 

 RF GRF F 

score 

GF 

score 

IG GIG 

LUNG 86.81 91.67 84.17 93.35 93.17 94.57 

AMLALL 80.54 90.18 83.04 91.61 84.82 94.46 

LEU 84.64 94.46 95.89 95.89 91.61 97.14 

GLIOMA 56.00 66.00 62.00 94.50 70.00 74.00 

ProCancer 86.67 88.76 96.67 98.89 94.44 94.44 

Synthetic 92.50 94.00 92.00 94.50 93.00 93.75 

4.3.3 BOOSTING ACCURACY ESTIMATION 

To show the effectiveness of Cluster Based Boosting technique with GRM feature selection, we compare the 

performances of adaboost and cluster based boosting technique with top 20 features selected by various supervised feature 

selection algorithms. 

To apply boosting to high dimensional data GRM feature selection is performed. K-Nearest Neighbor and support vector 

machines is the classifier used in boosting technique. From table 4 we infer that cluster based boosting with features selected 

from GRM based Fisher Score provides higher accuracy than all other combinations.  

By comparing the table 2, 3 with table 4, 5 respectively we infer that the Boosting technique with features selected by 

GRM framework provides higher accuracy than the supervised learners such as SVM and KNN. 

From table 4 and table 5 we observe that the Cluster Based Boosting technique gives higher accuracy than adaboost on all 

the features selection algorithm. 

Table 4. Five Cross Validation Performed On CBB with SVM as Classifier 

 GRF-Ada GRF-CBB GFS-Ada GFS- CBB GIG- 

Ada 

GIG-CBB 

LUNG 90.13 91.24 95.5 96.1 95.89 96.20 

AMLALL 89.10 90.36 97.14 97.52 95.67 96.23 

LEU 95.77 96.14 92.57 93.12 95.71 96.3 

GLIOMA 69.45 71.23 66.23 67.56 64.57 67.45 

ProCancer 93.25 94.67 97.56 97.81 96.56 97.10 

Synthetic 95.10 95.73 95.79 95.89 95.12 95.94 

 

We found that the source of the improved accuracy for CBB with GRM feature selection is by selecting globally non 

redundant features using GRM framework. Then, the source of CBB is generally the result of predictions on Heterogeneous 

Struggling and Heterogeneous Prosperous clusters. Taken together, these results support the effectiveness of our CBB 

selective boosting both in deciding when to boost on the clusters (Heterogeneous Struggling and Heterogeneous Prosperous) 

to address troublesome areas and when to refrain from boosting (Homogeneous Prosperous) to address label noise. 

Table 5. Five Cross Validation Performed On CBB with KNN as Classifier 

 GRF-Ada GRF-CBB GFS-Ada GFS- CBB GIG- Ada GIG-CBB 

LUNG 91.93 92.68 93.56 94.67 94.80 95.56 

AMLAL 91.1 92.45 91.65 93.01 94.67 95.6 

LEU 95.07 96.14 95.95 96.89 97.24 97.56 

GLIOMA 66.45 70.23 65.27 67.56 66.07 68.40 

ProCancer 89.10 90.45 98.89 98.89 94.56 95.37 

Synthetic 94.57 95.73 94.56 95.89 94.76 95.04 
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5 CONCLUSION 

We propose a cluster based boosting using x-means clustering in high dimensional data. We apply Global Redundancy 

Minimization framework on high dimensional data to obtain a more compact and non-redundant features. CBB address the 

various limitations on the supervised learners. We mitigate limitations such as filtering for subsequent functions and 

overfitting of subsequent functions by using appropriate amount of boosting and by learning only similar data.  And it is 

shown that CBB achieves higher performance than other boosting, we intend to continue our research in several issues such 

as fine tuning the CBB parameters for LE (δ1 in (2)) and MLE (δ2 in (3)) on h dataset. We intend to investigate how to 

automatically set these parameters based on the data structure and properties. 
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