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ABSTRACT: A system of differential equation approach was used to model the dynamical spread of malaria where humans 

and vectors interact and infect each other. Positivity of solution showed that there exists a domain where the model is 

epidemiologically and mathematically well-posed. The basic reproduction number R0 < 1 shows that disease can be 

controlled in the environment, otherwise the disease persist and become endemic whenever R0 > 1. Also, the numerical 

analysis performed shows that the most effective strategies for controlling malaria is to reduce the vector biting rate and 

increased the human treatment. 

KEYWORDS: Malaria, Humans, vectors, mathematical model, stability analysis, simulation study. 

1 INTRODUCTION 

Malaria is one of deadliest infectious disease caused by a parasite that lives part of its life in humans and the remaining in 

vectors. Malaria is a major killer of humans worldwide, claiming the lives of millions of people around the world. Malaria is 

widely spreads in the tropical areas of Asia, Africa, and Central and South America, where it affects millions of people. Each 

year, about 350 to 500 million cases of malaria recorded globally. However, more than one million of its victims, mostly 

young children, die yearly, although, malaria has been virtually eradicated in the United States and other regions with 

temperate climates [22]. 

Malaria is caused by a single-celled parasite from the genus Plasmodium, different species of Plasmodium exist. They 

produce malaria in various types of animals and birds, as well as in humans. Four of these species of Plasmodium commonly 

infect humans. Each one has a different appearance under the microscope, and each one produces a somewhat different 

pattern of symptoms. More than two species can live in the same area and infect a single person at the same time. 

Plasmodium falciparum is responsible for most malaria deaths, especially in Africa. Suddenly, the infection can develop and 

produce several life-threatening complications. With prompt and effective treatment, however, it is almost always curable. 

 Malaria parasite is transmitted to people through genus Anopheles mosquitoes. In rare cases, a person may become 

infected through contaminated blood, or a fetus may become infected by its mother during pregnancy, or after delivery. 

Also, because the malaria parasite is found in RBCs, malaria can also be transmitted through the unscreened, blood 

transfusion, organ transplant, or the shared use of needles or syringes contaminated with blood. Many biological and 

environmental factors shape the character of malaria in a given location, nearly all the people who live in endemic areas are 

exposed to infection repeatedly. Those who survive malaria in childhood gradually build up some immunity. They may carry 

the infection, serving as a mode of transmission by vectors without developing severe disease, [25]. 
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 Having gone through the work of many researchers on mathematical modeling of malaria, but precisely the work of [11] 

by incorporating the treated human and exposed vector  

In this paper, we developed a mathematical model in order to assess the potential impact of biting rate and treatment 

strategies on the dynamics spread of malaria taking both host and vector populations into account. 

2 MATHEMATICAL FORMULATION 

A system of differential equations are introduced to model the dynamical spread of malaria with control in two 

interacting population of humans and vector, we divided the total human population )(tNh , into Susceptible humans )(tSh , 

Exposed humans )(tEh , Infectious humans )(tIh , Treated humans )(tTh   and Recovered-  humans )(tRh  

i.e. )()()()()()( tRtTtItEtStN hhhhhh ++++=  .                (2.1) 

Unlike human population, we divided the vector population into three subclasses: Susceptible vector )(tSv , Exposed 

vector )(tEv  and Infectious vector )(tIv .The vector remain infectious for life and have no recovered class. Thus, the total size 

of the vector population at any time (t) is denoted by 

)()()()( tItEtStN vvvv ++=
.                 (2.2)

 

The population of susceptible humans is increased through recruitment of humans (by birth or immigration) into the 

society at rate hπ  and by recovered human at rate ψ due to waning of immunity acquired after successful treatment. It is 

decreased by infection acquired through bite with infected vector at rate hα and natural death at rate hµ .  

This gives:  hhhhhh
h SSR

dt

dS µαψπ −−+=                  (2.3) 

An exposed human is generated through infection of susceptible at rate hα  . It reduces due to progression of human from 

exposed to infectious at rate hκ and natural death at rate hµ . Thus hhhhhh
h EES

dt

dE µκα −−=   (2.4) 

Infected human is generated through progression of humans exposed to vector at rate hκ . It diminishes due to recovery 

at rate r , natural death at rate hµ , vector induced death rate δ and treatment of infection human at rateτ . Therefore  

( ) hhhhhh
h IIrIE

dt

dI τδµκ −+−−=                     (2.5) 

The treated human is generated by the treatment of human from infection at rateτ . It reduces through progression from 

treatment to recovery at rate ε  and natural death at rate hµ . Thus hhhh
h TTI

dt

dT µετ −−=    (2.6) 

The recovered humans are generated by the recovery of infected human and the progression from treatment to recovery 

at rateε . It decreased by loss of immunity at rate ψ and natural death at rate hψ . Thus 

 hhhhh
h RRTrI

dt

dR µψε −−+=                          (2.7) 

The susceptible vector is generated through recruitment of vector (by birth or immigration) at rate vπ  It reduced by 

infection, acquired when susceptible vector bite infected humans at rate vα and by natural death at rate vµ . This yield 

vvvvv
v SS

dt

dS µαπ −−=                              (2.8) 

The population of exposed vector is generated through infection of susceptible at rate vα . It decreased by progression of 

vector from exposed to infectious at rate vκ  also by natural death at rate vµ . Thus 

EES
dt

dE
vvvvv

v µκα −−=                    (2.9) 
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The infected vector is generated through progression of vector from exposed to infectious class at rate vκ . It reduced by 

natural death at rate hµ . Thus 

vvvv
v IE

dt

dI µκ −=                                               (3.0) 

Equations (2.3) - (2.8) summarize the dynamics of malaria transmission with controlling measures. This lead to the 

following system of nonlinear ordinary differential equations: 
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IE )( ηφβα +=  in the model, the term 
v

vvh
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Iφβ
 denotes the rate at which the 

susceptible humans hS , become infected by infectious female vectors vI  and 
h

hhhv

N

IE )( ηφβ +
 refers to the rate at which the 

susceptible vector vS become infected by infectious humans hI . It is important to note that the rate of infection of 

susceptible human hS   by infected vector vI   is dependent on the total number of humans hN   available per vector, [17].  
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Table 1: Variables and Parameters description for the Malaria model 

Variable and Parameters Description 

)(tSh  
Number of susceptible humans at time t. 

)(tEh  Number of exposed humans at time t. 

)(tIh

 

Number of infected humans at time t. 

)(tTh  Number of treated humans at time t. 

)(tRh  Number of recovered humans at time t.  

)(tSv  Number of susceptible vector at time t. 

)(tEv  Number of exposed vector at time t.  

)(tIv  Number of infected vector at time t 

)(tNh  Total number of human population at time t. 

)(tNv  Total number of vector population at time t. 

hπ  Recruitment rate of humans. 

ψ  Rate of loss of immunity. 

hα  Force of infection of humans from susceptible state to exposed state. 

hµ  Natural death rate for humans. 

hκ  Rate of progression of humans from the exposed state to the infectious state. 

τ  Treatment of humans from the infectious state to the recovered state. 

r  Recovery rate of infected humans. 

ε  Progression rate from treated to recovered class 

V
π  Recruitment rate of vector. 

vα  Force of infection of vector from susceptible state to exposed state. 

vµ  Natural death rate for vector. 

δ  Disease-induced death rate for humans.  

vκ  Rate of progression of vector from the exposed state to the infectious state.  

vhβ  Probability of transmission of infection from an infectious vector to a susceptible human 

provided there is a bite.  

hvβ  The probability of transmission of infection from an infectious human to a susceptible vector 

provided there is a bite.  

φ  Biting rate of vector.  

 

The total population sizes are hhhhh RTIEN ++++= hS    and vvvv IESN ++= with their differential equations 
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NIN
dt
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dt
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dt
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dt
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dt

dR

dt

dT

dt

dI

dt

dE

dt

dS

dt

dN

µπδµπ
           (3.2)                         

3 INVARIANT REGION 

The invariant region can be obtained by the following theorem. 

Theorem 1: The solutions of the model (2.9) are feasible for all 0>t if they enter the invariant region .vh Ω×Ω=Ω  

Proof: Let ( ) 8,,,,,,,, +∈=Ω RIESRTIES vvvhhhhh  be any solution of the system (3.1) with non-negative initial conditions. In 

absence of the malaria ,i.e. 0=hI , equation (3.2)  

Hence all feasible solution set of the human population of the malaria model enters the region 
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Similarly, the feasible solution set of the vector population enter the region 
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Therefore, the region Ω  is positively invariant i.e. solution remains positive for all temporal values. 

Thus, the model (3.1) is biologically meaningful and mathematical well-posed or well present in the domain Ω . 

3.1 BASIC REPRODUCTION NUMBER 0R  

We use the next generation operator approach as described by [10] to define the basic reproduction number, 0R , as the 

number of secondary infections that one infectious individual would create over the duration of the infectious period, 

provided that everyone else is susceptible. Finally the basic reproduction number 0R is given by  
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3.2 LOCAL STABILITY OF THE DISEASE FREE EQUILIBRIUM 

The local stability of the disease-free equilibrium can be analyzed using the Jacobian matrix of the malaria model at the 

disease free equilibrium point. Using [27], the following theorem holds. 

Theorem 2: The disease free equilibrium point for the model (3.1) is locally asymptotically stable if 10 <R  and unstable if

10 >R .  

Proof: The Jacobian matrix (J) of the malaria model (3.1) with )( hhhhhh RTIENS +++−= and )( vvvv IENS +−= at the 

disease-free equilibrium point is given by 
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The eigenvalues of the Jacobian matrix are the solutions of the characteristic equation 0=− IJ λ .  

This implies 
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Where vvA µκ +=1 , hhA µκ +=2 , vA µ=3 , τδµ +++= hrA4  

which is equivalent to the polynomial 
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          (3.6) 

Since solving the above characteristic polynomial for eigenvalues is tedious we will use the Routh-Hurwitz criterion to 

determine whether all roots have negative real parts and establish the stability of the system without solving the 

characteristic equation itself. We use the following lemma. 

Lemma 1 (Routh-Hurwitz criterion): The roots of the characteristic equation have negative real parts if and only if all the 

principal diagonal minors of the Hurwitz matrix are positive provided that .00 >B  For our case of a fourth order system, the 

stability criterion is defined by the inequalities  

00 >B , 01 >B , 02 >B , 03 >B , 04 >B  
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Since all the determinants of the Hurwitz matrices are positive, then it means all the eigenvalues of the Jacobian (3.4) 

have negative real part and 10 <R .  Therefore, disease-free equilibrium point is stable. 

3.3 THE ENDEMIC EQUILIBRIUM POINT 

Endemic equilibrium points are steady state solutions where the disease persists in the population (all state variables are 

positive). That is, ( ) 0,,,,,,,,* >= ∗∗∗∗∗∗∗∗
vvv IESRTIESE

hhhhh
this is obtained by setting the right hand side of (2.9) to zero and 

solve, we have 













==
−−

=
+

==

==
++−

=

∗∗∗∗∗

∗∗∗

5

2

5

22

4321

3

321

1

21

1

1

1

4321

314321432111

,,,
)(1

,

,,,

K
I

K
ES

KKKK

rK
R

KKK
T

KK
I

K
E

KKKK

KrKKKKKKKK
S

v

v
v

v

v
v

hh

h
h

h

hhh
h

vhh

h

µ
φκφ

µ
πφτεκφφτκ

φκφ
µ

κφψπφεψτφκ

           (3.7) 
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Where vvhhhhh KKKrKK µκµψµετδµµκ +=+=+=+++=+= 54321 ,,,)(,  

,
v

hvvh

N

SIφβφ =1  
h
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2

ηφβφ += . 

3.4 NUMERICAL SIMULATION 

A numerical simulation of the model was performed for better understanding of dynamic spreads of the malaria in human 

and vector populations. The simulation is conducted using a fourth order Runge-kutta scheme in Maple 17 software. 

The parameter values defined in Table 3 were used with the initial conditions 

000,13)0( =hS , 000,8)0( =hE , 000,5)0( =hI , 000,4)0( =hT , 000,3)0( =hR , 000,9)0( =vS , 000,7)0( =vE , 

000,5)0( =vI   

 
 

Fig. 1. The graph of dynamic spreads of malaria in human 

compartments 

Fig. 2. The graph of dynamic infected human at different 

treatment rate 

  

Fig. 3. The graph of recoverd human at different treatment 

rate 

Fig. 4. The graph of susceptible human at different values 

of biting rate 
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3.5 DISCUSSION OF RESULT AND CONCLUSION 

Eight (8) new compartmental models were formulated to gain more insight into the dynamical spread of malaria. It 

showed the existence and uniqueness of a domain where the model is epidemiologically and mathematically well-presented. 

The model was analyzed for the disease free equilibrium and endemic equilibrium. Basic reproduction number ‘ 0R ’ which is 

the baseline to determine whether  the disease will die out or spread was calculated using next generation matrix method, 

the result shows that, disease dies out whenever the threshold 10 <R but spreads when it exceeds unity i.e. 10 >R . Also, 

numerical simulations illustrate that Figure 1: shows the distribution of human population with times in all classes. It is found 

that initially the proportion of susceptible population decreases slightly in early childhood and increases gently to finally 

reach its equilibrium this is due to treatment, as a result of that infection is minimized in childhood. In the initial stage of 

treatment population, we observed that the treatment population was high this is attributed to the progression rate of 

treatment of individual from malaria. After some times, we again see that the treatment population decreases steadily and 

then remained constant for some times, this is because individuals who are accessing treatment are now leaving the treated 

class to recovered class. 

Recovered population increases due to the fact that those who are infected leaving the treated class after receiving the 

treatment and remain constant for some times but later decline because of loss immunity. 

Figure 2: illustrates the change in infected human at different treatment rate. Infected population initially was high but as 

the treatment increases some children recovers and others die.  

Figure 3: illustrates the change in recovered human at different treatment rate. Recovered population increased as the 

infected class is reduced due to increase in treatment. 

Figure 4: illustrates the change in susceptible population at different values of biting rate. Susceptible population was 

reduced due to the biting rate of infectious vector as the biting rate is reducing susceptible becoming high.  

Conclusively, the most effective strategies for controlling malaria are to reduce the vector biting rate and increased the 

human treatment. 

Table 3:  Shows the estimated parameters and their sources for the model (3.1).  

The rates are given per day. 

Symbol Value Source 

hπ  0.000051 [5] 

ψ  0.011 Assumed 

hµ  0.000043 [26] 

hκ  0.071 [30] 

τ  0.143 [23] 

r  0.02 [1] 

ε  0.6 Assumed 

V
π  0.071 [20] 

vµ  0.04 Assumed 

δ  0.0000027 [28] 

vκ  0.091 [8] 

vhβ  0.066 Assumed 

hvβ  0.42 Assumed 

φ  0.4 [8] 

η  0.02 Assumed 
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