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ABSTRACT: In this paper, we use the fractional q-Integrals on a specific time scales to generate some new inequalities of 
Gruss type. For this paper, some classical results can be deduced as some special case. 
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1 INTRODUCTION 

In 1935, G. Gruss [1] proved the following classical integral inequality: 

           ( )( )1 1 1
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f x g x dx f x dx g x dx     

  
     

provided that  f   and  g   are two integrable functions on  ],[ ba   and satisfying the conditions  

 ( ) , ( ) ; , , , , [ , ] 2f x g x x a b          R  

 In [2], Dragomir proved that: 
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where: 

           ( , , ) : ( ) ( ) ( ) ( ) 4
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a a a a
T f g p p x dx p x f x g x dx p x f x dx p x g x dx      

and p is a positive function on [ , ],a b  and f  and g  are two integrable functions on [ , ]a b  satisfying  2 .   

In the case of fractional integrals [3], G. Anastassiou established another fractional integral inequality of Gruss type. Other 
papers dealing with various generalizations related to the Riemann-Liouville fractional integrals and to the q -fractional 

integrals have appeared in the literature. For more details, we refer the reader to ([4], [5], [6], [7]). 
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In this paper, we use the fractional q -integrals on time scales to establish new inequalities related to (1) and (3). Our 

results have some relationships with those obtained in ([5], [6]) and mentioned above. For these results, Theorem 3.1 of [4] 
can be deduced as a particular case. 

2 NOTATIONS AND PRELIMINARIES 

We give a summary of the mathematical notations and definitions used in this paper. For more details, one can consult 

[8]. Let  .
0
Rt    We define: 
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 For a function ,:
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RTf t  the   q-derivative of f  is: 
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 For all }0/{Tt  and its  q  -integral is defined by:  
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 The fundamental theorem of calculus applies to the q -derivative and q -integral. In particular, we have:  
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 If f  is continuous at 0 , then: 
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 Let 
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, tt TT  denote two time scales. Let  RTf t 1
:   be continuous let  

21
: tt TTg    be  q -differentiable, strictly 

increasing, and 0)0( g . Then for ,
1t
Tb  we have:  
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The  q -factorial function is defined as follows: 

If n  is a positive integer, then: 
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 If n  is not a positive integer, then: 
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 The q -derivative of the q -factorial function with respect to t  is: 
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And the q -derivative of the q-factorial function with respect to s  is: 
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 The q -exponential function is defined as: 

 15       1)0(),1()(
0
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 The fractional q -integral operator of order 0  , for a function f is defined as: 
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Where:  
1 11

1 10( ) : ( ) ( )u
q qq q e qu u 

       

3 MAIN RESULTS 

Our first result is the following theorem. This result can be found in [4]. Here, we propose another method to prove it. 

THEOREM 3.1:  Let f and g  be two integrable functions on [,0[   satisfying the condition (2) on [,0[   and let p  be a 

positive function on [.,0[  Then for all ,0,0  t  we have:   
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PROOF: Let us consider the quantity: 

 ( , ) : ( ( ) ( ))( ( ) ( )); , (0, ) 18H f f g g t            

It is easy to see that: 
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Thanks to the weighted Cauchy Schwartz integral inequality, we can write:  
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Using (16) we can develop the right hand side of (20) as follows: 
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And: 
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Thanks to (19) (21) and (22) we can write (20) as follows: 
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On the other hand, we have: 
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Which implies that: 
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Now, multiplying both sides of (25) by 
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 ; (0, )t  and integrating the resulting identity with respect to 

over  ),,0( t   we have: 
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Which gives: 
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Applying  (27) with fg   we obtain: 
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Now using (29) and (30) we can estimate the inequality (23) as follows: 
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By the inequality ,,,)(4 2 R srsrrs  we obtain: 
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Thanks to (31) (32) and (33) we obtain (17). 
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       Our second result is the following theorem in which we generalize Theorem 3.1 of [4]. 
 

THEOREM 3.2:  Let f and g  be two integrable functions on [,0[   satisfying the condition (2) on [,0[   and let p  be a 

positive function on [.,0[  Then for all ,0,0,0  t  we have:   
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Proof: Multiplying (18) by  
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   ( ) ( )p p  ; , (0, ),t   integrating the resulting identity with respect to     

and  over ,),0( 2t  then applying the Cauchy-Schwarz inequality for double integrals, we obtain: 
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Therefore, 
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Applying (37) with fg   we obtain: 
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Since  ( ( ))( ( ) ) 0f x f x       and  ( ( ))( ( ) ) 0,g x g x       then can write: 
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Thanks to (41) (42) and (35), we obtain (34). 

REMARK: 1. Applying Theorem 3.2 for    we obtain Theorem 3.1     

    2. Applying Theorem 3.2 for    we obtain Theorem 3.1 of [4] on .0],,0[ tt  
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