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ABSTRACT: In this paper, two robust optimal control strategies: Discrete Model Predictive Control (DMPC) and Linear 
Quadratic Regulator (LQR) are proposed to solve the problem of backlash nonlinearity present in two mass system and also 
reducing the sensor noise present at the output of the system. In past, number of attempts has been made to develop the 
optimum controls for backlash nonlinear system to compress the oscillations in load speed. The (DMPC) and (LQR) are now 
one of the most successful robust optimal control strategies for highly uncertain nonlinear systems like specially the one we 
have in industries. The (DMPC) and (LQR) require online information of all the states of the nonlinear system, so role of 
estimators becomes very prominent in (DMPC) and (LQR). In this paper, Kalman Filter (KF) has been used for the state 
estimation assuming that sensor noise is also present at the output of the system, so in that case load speed, which is also 
output of the nonlinear system contains backlash nonlinearity and random sensor noise, so now both (DMPC) and (LQR) have 
to deal with two problems simultaneously. In simulations, a comparison has been presented between the two control 
schemes. From simulations, it is quite clear that (DMPC) performance is much better than (LQR), while suppressing 
oscillations due to presence of backlash and sensor noise at the output of the system. Comparison between two controllers 
also reveals that (DMPC) is much faster than (LQR), while achieving tracking. 
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1 INTRODUCTION 

Backlash mechanism can be seen in many mechanical systems because of presence of the gap between teeth of gear, in 
that situation the driving member (motor) is not directly connected to the driven member (load).T The major difference 
between RHC and LQR is that, in RHC, horizon window slides along with each sample time [1], so for each sample time new 
control law is generated and implemented to get desired output during that sample time, and on that measured output, the 
new control law is again generated. In LQR control, the control law is generated on a fixed horizon window, and that is the key 
reason why LQR is less robust than RHC. 

The paper is organized as follows. The modeling of the two mass system is given in section II. Section III introduces the 
RHC. The KF design is presented in section IV. The LQR is designed in section V. 

2 MODEL 

The two mass system model consists of a motor and a load, connected with a shaft, as shown in Fig.1. 

The dynamics of a motor [2] can be expressed in (1): 

m
m m m sh m

d
J b T T

dt


         (1) 
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Similarly, the load side dynamic has been described in (2): 

l
l l l sh d

d
J b T T

dt


          (2) 

The shaft torque equation is given as [2]: 

sh s sh s shT k b          (3)  

  

and      

d m l

sh d b

d m l

sh d b

  

  

  

  

 

 

 

 

       (4) 

 

Where m  is the motor position, l  is the load position, d  is the difference angle, sh  is the shaft twisting angle. 

Similarly, corresponding speed variables are defined in (4). Having dynamic equations, the state space model for the linear 
two mass system can be obtained by putting (3) in (1) and (2), and rearranging. All the controllers and Kalman filter in this 
paper have been designed on the state space model shown in (5). For the linear system model we assume that 0b  , which 

is backlash angle.  
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Table 1. Model Parameters  

Symbol Description Value 

 Shaft elasticity 3300 Nm/rad 

 Load moment of inertia 1 Kgm2 

 Motor moment of inertia 2 Kgm
2
 

 Motor damping coefficient 0.1 Nms/rad 

 Load damping coefficient 0.1 Nms/rad 

 Shaft damping coefficient 1 Nms/rad 

 

The nonlinear model of the two mass system can be obtained by inserting non linearity given in (6) in the shaft torque 
equation given in (3), from Nordin’s exact model [2]. 
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Fig. 1. Two mass system with gear having backlash of size   

 

Fig. 1, completely describes the two mass system with backlash nonlinearity, where   is the backlash size and is b  the 

backlash speed. 

3 DISCRETE MODEL PREDICTIVE CONTROL 

DMPC or RHC is an optimum control strategy based on minimization of some cost function [3]. In the standard RHC, the 
state space model of the two mass system is utilized to have desired output.  

In order to design RHC, the augmentation of an integrator with the actual state space model is required [3]. Then the 
state space model will take the form of (7), which is also acknowledged as the augmented model of the system: 
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From the augmented model, the states are predicted using the current information from the system and future control 
moves [4]. 

The predicted output vector can be written in (8): 
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    (8)  

Let we symbolize theses matrices in (9):  

 ( )iY Wx k U         (9)  

Where 
PN  and 

CN  are the prediction and control horizon of the predicted output and the control moves respectively [4]. 

The cost function for RHC can be written in the form of (10): 

( ( )) ( ( )) 2 ( ( )) ( )T T T T T
S i S i S iJ R Wx k R Wx k U R Wx k U R U              (10) 

 Where R  is the weighting matrix, and 
1[111....1] ( ) ( )

P

T
S xN i s iR r k R r k   

 The optimum control law can be obtained by applying optimization condition, which is of cost function minimization.  

1( ) ( ( ))T T
S iU R R Wx k       

Since in RHC, only first sample is taken to predict states, so the control law becomes:  

1 1( ) [1000....0] ( ) ( ( ) ( ))CN T T T
i S i iu k R R r k Wx k        

 On further simplifying, following control law has been obtained: 

( ) ( ) ( )i y i mpc iu k K r k K x k        (11)  

 Where 
yK  is the first element of 1( )T T

SR R    and 
mpcK  is the first row of 1( )T TR W      

 Fig. 2 describes the closed loop system with RHC. Where mpc x yK K K     and ( )r k  are the closed loop gains and set 

point signal respectively [5, 6].  

 
Fig. 2. RHC complete architecture 
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4 DISCRETE KALMAN FILTER  

The Discrete KF is basically an estimator for the states of the LTI system disturbed by white noise, and also taking the 
measurement corrupted by white noise [7, 8]. 

In the discrete time KF problem, the discrete time stochastic process is given in (12): 

1 1k k k kx Ax Bu w       (12) 

 
And the measurement equation is given in (13): 

k k ky Cx v         (13) 

Where ��, �� are the white process and measurement noises respectively.  

Let we symbolize the a priori state estimate at time � having the information of process a prior to step � by ���
� and ��� be 

the posteriori state estimate at step k having the measurement ��. 

The a priori estimate error covariance is 

[ ]TK k kP E e e          (14) 

And a posteriori estimate error covariance is 

[ ]Tk k kP E e e  

The KF is basically used to discover the a posteriori state estimate as the linear combination of a priori estimate and a 
weighted difference of the measured and predicted measurement. 

( )k k k kx x K z Cx   
  

 

 The term �(�� − ����
�) in above equation is called the residual. Zero residual means that two are in complete 

concurrence. 

Where � is the gain of KF that minimizes the a posteriori error covariance. 

The Kalman gain matrix can be obtained by following equation (15): 

1( )T T
k kK P H HP H R      (15) 

  
From eq (15) , it is clear that as � approaches zero the residual is weighted more by the Kalman gains and vice versa [8, 

9]. The KF algorithm composed of two equations, the time update equations and measurement update equations. 

The time update and measurement update equations are also known as predictor and corrector equations, both the 
equations are given below: 

Time Update Equations 

1 1
ˆ ˆ
k k kx Ax Bu 

    

1
T

k kP AP A Q
    

  
Measurement Update Equations 

1( )T T
k kK P H HP H R     

ˆ ˆ ˆ( )k k k kx x K z Cx    	 

( )k k kP I K H P    
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From the above equations, it is clear that the KF is recursive in nature. After obtaining the posteriori state estimates, they 
are then used to predict new a priori state estimate. 

In the KF algorithm, the matrices �	and	� are process and measurement noise covariances and also known as the tuning 
parameters. After obtaining the state estimates, these states are feedback to the RHC and LQR to get desired output [10]. 

5 LINEAR QUADRATIC REGULATOR  

The LQR is the second optimum control strategy, that has been adopted to solve the problem of backlash nonlinearity 
and presence of sensor noise. The LQR gives closed-loop gains based on some minimization criterion [11]. The cost function 
for the LQR design is described in (16):  

0
( ( ) ( ) ( ) ( ))T TJ x t Qx t u t Ru t dt



       (16) 

 Where matrices R  and Q  are the weighting matrices of the states and input respectively [12], giving the compromise 

between the state transient energy and control input energy. 

The cost function shown in (16) is of a fixed infinite horizon, while that of RHC, it was receding horizon, so that is why the 
RHC is more robust to the backlash nonlinearity as compared to LQR. 

For the state space model in (5), the control law can be written in (17): 

( ) ( ) ( )LQRu t r t K x t         (17) 

Where 
LQRK  is the closed-loop gain matrix [13]: 1 T

LQRK R B P   

Where P  is the solution of the following algebraic Riccati equation (18): 

 
1 0T TA P PA PBR B P Q         (18) 

6 SIMULATION RESULTS  

For the simulations, the proposed controllers and Kalman Filter designed for linear state space model of the two mass 
system, are now applied to the actual two mass system with backlash nonlinearity. 

 

 

Fig. 3. Closed loop system for load speed control 

The model parameters used in the simulations are given in table 1. In Fig. 3, the closed loop system for the load speed 
control with KF is shown. Where's 

m , 
l , ˆ ˆˆ ˆ, , ,m l m l     and 

ref  are the motor torque , load speed, estimated motor speed, 

estimated load speed, estimated motor position, estimated load position and reference load speed respectively. In case of 
the load speed control, the load speed 

l  corrupted by white noise is measured to have the state estimates. In order to have 

the desired load speed, the controller generates control law after utilizing the state estimates from KF. 

In simulations, the problems of oscillations and noise in the load speed have been considered by applying the two 
optimum controllers, RHC and LQR. Fig. 4 and Fig. 5 show the results for the control of the load speed of the two mass 
system with backlash nonlinearity and white noise disturbance with RHC and LQR, using KF. It is evident from the results that 
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the performance of the RHC is better than LQR, while suppressing oscillations due to backlash nonlinearity and also 
minimizing the affect of sensor noise. It is also observed from the plots that the RHC has less settling time as compared to 
LQR. In Fig. 6 and Fig. 7, the reference to the control system is now rectangular wave having frequency slightly less than that 
of the systems cutoff frequency, for that case similar results can be deduced as that of the step input. The sine wave as a 
input, is now given to the control system in Fig. 8 and Fig. 9, and due to the slowness of the LQR controller, there is more 
delay in the tracking signal as compared to that of RHC and the noise cancellation in the RHC control is still better than LQR. 

 

Fig. 4. Speed control of system with reference step, Load speed is regulated with LQR and Kalman Filter.  

 

   

Fig. 5. Speed control of system with reference step, load speed is regulated with RHC and Kalman Filter 
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Fig. 6. Speed control of system with reference square wave, load speed speed is regulated with LQR and Kalman Filter  

 
 

   

Fig. 7. Speed control of system with reference square wave, load is regulated with RHC and Kalman Filter 
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Fig. 8. Speed control of system with reference sine wave, load speed is regulated with RHC and Kalman Filter  

 

   

Fig. 9. Speed control of system with reference sine wave, load speed is regulated with LQR and Kalman Filter  
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7 CONCLUSIONS 

This paper reveals that, the RHC is more suitable control strategy than LQR while dealing with the backlash nonlinearity 
and also measurement noise present in the load speed of the two mass system. From simulations, it is clear that the RHC 
suppresses oscillations due to backlash nonlinearity and sensor noise in load speed much better than LQR, and this is because 
of the fact that, RHC changes its horizon after each sample time, also RHC is faster than LQR, while achieving tracking.  

ACKNOWLEDGMENT 

First of all I would like to thank Almighty Allah for giving me support, courage and strength for completing my thesis. After 
that I am thankful to my thesis supervisor Dr Khalid Munawar for his continuous support and guidance during my Master 
thesis work. 

I would also like to thank my committee members Dr Mohammad Bilal Malik and Dr Mohammad Salman not only for 
their support but guidance in my research work.  

After that I am also thankful to my parents, who had prayed for my success and provided full support during my thesis 
work. Without their support I wouldn’t be able to complete my work.  

REFERENCES  

[1] Michael Lundh and Mats Molander, State-Space Models in Model Predictive Control, ABB Automation Products AB, 
2002. 

[2] Mattias Nordin, Per-Olof Gutman, Controlling mechanical systems with backlash—a survey, Rolling Mills Department, 
ABB Process Industries, 721 67 Va_stera_s, Sweden, 2002. 

[3] W.H. Kwon and S. Han, Receding Horizon Control, Springer, Seoul 151-742 Korea, 2005. 
[4] Liuping Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, Girona, Spain, 

2009. 
[5] C. V. Rao, S. J. Wright, and J. B. Rawlings, “On the application of interior point methods to model predictive control,” 

Journal of Optimization Theory and Applications, 99:723–757, 1998. 
[6] P. J. Gawthrop and L. Wang, “Intermittent model predictive control,” Journal of Systems and Control Engineering, 

221:1007–1018, 2007. 
[7] M. Rodríguez1 and J. Gómez, Analysis of Three Different Kalman Filter Implementations for Agricultural Vehicle 

Positioning, Departamento de Teoría de la Señal, Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, 
47011 Valladolid, Spain.  

[8] K.I. HOI, K.V. YUEN, K.M. MOK, Optimizing the performance of kalman filter based Statistical time-varying air quality 
models, Department of Civil and Environmental Engineering, University of Macau, Av. Padre Tomás Pereira Taip, Macau, 
China. 

[9] Greg Welch and Gary Bishop, An Introduction to the Kalman Filter, Department of Computer Science University of North 
Carolina at Chapel Hill, 2006. 

[10] M. Saito and M. Yamakita, “MPC for a Simplified Transmission Model with Backlash Using UKF,” International 
Conference on Control Applications, Munich, Germany, October 4-6, 2006. 

[11] J. Vondřich, E. Thőndel, “Modeling of LQR Control with Matlab”, CTU in Prague, 2003. 
[12] S.Amir Ghoreishi, Mohammad Ali Nekoui, and S. Omid Basiri, Optimal Design of LQR Weighting Matrices based on 

Intelligent Optimization Methods, South Tehran Branch, Islamic Azad University, Tehran, Iran, 2011. 
[13] Yang, Y., “Analytic LQR Design for Spacecraft Control System Based on Quaternion Model,” J. Aerosp. Eng, 2011. 


