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ABSTRACT: In the work reported here we looked at the magnetic behaviour of a 3/2 spin system with crystalline anisotropy 

and transverse field. The spin Hamiltonian considered here contains terms which cannot be commuted further, giving rise to 
important quantum effects: quantum fluctuations and thermal fluctuations. We used the mean field approximation method 
to determine the expressions of magnetization along the z (longitudinal) axis and the x (transverse) axis, as well as the 
partition function. The thermal  variations mz and mx for different values of the transverse field show that the latter inhibits 
order along the z axis and encourages spin confinement in the transverse plane. 
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1 INTRODUCTION 

Solid state chemists and physicists have long been interested in exchange interactions between transition ions within 
materials, because of their significance at a fundamental level. When these interactions affect all the magnetic sites of a 
crystal lattice, quantum models have to be used and numerous approximations are necessary. These quantum models have 
given theoretical results which are in good agreement with experimental results. 

Application of altered spin chain models to αFe2PO5 compounds (ignoring interchain reactions) has shown that the 
behavior of this compound is ferromagnetic [1]. We have previously used the dimer and chain models to determine the 
magnetic sensitivity, specific heat and entropy of the compound MnFePO5 [2]. The Fisher, dimer and Ising models have been 
used to determine the magnetic behaviour and certain thermodynamic properties of low dimensionality systems [3] [4]. 
Several authors have studied the critical behavior of the Ising Hamiltonian in the presence of the transverse field exactly in 
one dimension [5]. This model shows a quantum transition at T=0 when the transverse field tends towards a specific value 
(critical value Ω=Ωc). This transition is due essentially to quantum fluctuations [6]. This Hamiltonian has also been studied at 
higher dimensions using various approximation methods, e.g. development in series, development in 1/p where p is the 
coordination number [7], effective field methods [8]. 

In the work presented here, we have used the Ising model to study the effects of crystalline anisotropy and of the 
transverse field on the magnetic properties of a quantum system of spin 3/2. 

2 EFFECT OF CRYSTAL FIELD AND TRANSVERSE FIELD ON A SYSTEM OF SPIN 3/2  

2.1 SPIN HAMILTONIAN 

The Hamiltonian of a given spin system, under the action of the transverse field and in the presence of the crystal field, is 
given by the following equation:  
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 � = −∑ �����

���
� −〈��〉 � ∑ ��

� − �∑ (��
�)��  (1) 

 
where Ω is the transverse field, Jij the exchange coupling constant, which is equal to J for the first near neighbours and to 

0 for non-neighbours, and D is the crystalline anisotropy constant. 

2.2 PARTITION FUNCTION 

Let ��
� and ��

� be the matrices of the system of spin S = 3/2. They are written in the eigenvector base ��
� as: 

 

 ��
� = �

3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2

�  (2) 

 

 ��
� =

⎝

⎜⎜
⎛

0 �3/2 0 0

�3/2 0 1 0

0 1 0 �3/2

0 0 �3/2 0 ⎠

⎟⎟
⎞

 (3) 

 

 (��
�)� = �

9/4 0 0 0
0 1/4 0 0
0 0 1/4 0
0 0 0 9/4

�  (4) 

 
Using the mean field approximation method, the Hamiltonian (1) is reduced for a given spin system to the following 

equation: 
 −��� = ����

� + ���
� + ∆(��

�)� (5) 
 

Replacing the matrices ��
�, S�

� and ���
��

�
 in equation (5), the Hamiltonian (-βH1) can be written out as the following 

matrix: 

 −��� =
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⎜
⎛
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�∆

�
�

√��
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√��

�
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+

∆

�
� Γ 0

0 Γ �−
�ʹ

�
+

∆

�
�

√��

�

0 0
√��

�
�−

��ʹ

�
+

�∆

�
�⎠

⎟
⎟
⎟
⎞

 (6)  

 
Let P3/2 be the characteristic polynomial of the matrix (6): 

  

 SRxQxPxxxIHP  234
412/3 ))det((   (7) 

 
This polynomial is of degree 4 and allows four roots as solutions (��, ��, �� and ��). These roots are the eigenvalues of 

matrix (6) and the parameters P, Q, R and S of the polynomial P3/2 are given by the following: 
 

� = 5∆ 
 

 � =
��

�
∆� −

�

�
λ′� −

�

�
Γ� 

� =
33

3
∆Γ� −

45

16
∆� +

9

4
∆λ′� 

 

� =
9

8
�
9

32
∆� +

1

2
λ′� +

1

2
Γ� −
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1
∆�Γ� −

5

4
∆�λ′� + Γ�λ′�� 
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To find the eigenvalues of matrix (6), we need to solve the equation ��/� = 0, i.e.: 

 
 �� − ��� + ��� + �� + � = 0 (8) 
 

The variable � = � + �/4	 is exchanged in order to eliminate the order 3 term. Equation (8) then becomes: 
 
 �� + ��� + �� + �= 0  (9) 
 

where: 

 � = �� −
�

�
�� 

 

 � = � +
�

�
�� −

�

�
�� 

  

 �=
�

�
�� +

�

��
��� −

�

���
�� + � 

 
   

Equation (9) can also be written as follows: 
 

 (�� + ��+ �)(�� − ��+ �) = 0 (10) 
 

where t, μ and η are coefficients other than zero. 

 
Equation (10) is equal to zero, which implies that: 

 
 �� + ��+ � = 0 (11) 
 

where 

 �� − ��+ � = 0 (12) 
 
Equations (11) and (12) both admit two square roots as solution, and these can be written as: 

  

 ��,� =
�

�
�±

�

�
� �� − 4� (13) 

and: 

 ��,� =
�

�
�±

�

�
� �� − 4� (14) 

 
On the basis of equations (13) and (14), we can deduce the four square roots (��, ��, �� and ��) of equation (7). 
 

 �� =
�

�
−

��

�
+

�

�	
� 4�� − 16� (15) 

  

 �� =
�

�
−

��

�
−

�

�	
� 4�� − 16� (16) 

  

 �� =
�

�
+

��

�
+

�

�	
� 4�� − 16� (17) 

 

 �� =
�

�
+

��

�
−

�

�	
� 4�� − 16� (18) 

 
We need to find t, η and μ in order to determine ��, ��, �� and ��. 
 

 � =
�

�
�� + �� −

�

�
�  (19) 
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Combining equations (9) and (10) we find:  
 

 � =
�

�
�� + �� +

�

�
� (20) 

 
 �� = � (21)  

 
To calculate μ and η, we need to find t. Equation (21) is equivalent to:  

  
 �� + 2��� + (�� − 4�)�� − �� = 0 (22) 
  

In order to solve equation (22), we replace the variable with t
2
 = Z, and equation (22) becomes: 

 
 �� + ��� + �� + � = 0  (23) 
 

where: 

 � = 2� 
 � = �� − 4� 
 � = −�� 

 

When the variable is replaced with � = � +
�

�
�exp, equation (23) becomes:  

  
 �� + ��� + �� = 0 (24) 

 where: 

 �� = � −
��

�
 

  

 �� = � −
��

�
+

�

��
�� 

   

Let ∆�= �
��

�
�
�

+ �
��

�
�
�

 be the discriminant of equation (24): 
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3
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3
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3
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3
λ’�Г�∆�

−
500

3
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352

3
λ’�Г�∆� −
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3
λ’�∆� − 44λ’�∆� −

160

3
λ’�∆� +

40

3
λ’��∆� −

4

3
Г�∆� −

4

3
Г��∆�

− 8Г��λ’� − 20λ’�Г� −
80

3
λ’�Г� − 20λ’�Г� − 8λ’��Г� −

4

3
Г�� −

4

3
λ’�� 

 
 

Whatever the values of λ’, Г and Δ, the sign of Δ0 is negative, which means that the solutions of equation (24) are real, and 
are expressed as: 
 
 � = �′cos(�) (25) 
 

Parameters α’ and θ are given by the following:  
 

 �� = 2�−
��

�
 

 
   

 � =
�

�
arccos�

��

����
��
�
�
�
� =

�

�
arccos(�) 
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where: 

 

 � =
��

����
��
�
�
�
 (26) 

 
The parameter t is given by: 

 

 �= √� = �� −
�

�
= ��� cos(�) −

�

�
 (27) 

 
Using equations (19) and (20) the eigenvalues (��, ��, �� and ��) of matrix (6) become: 

 

 ��,� =
�

�
−

��

�
±

�

�
�−4�� − 8� +

��

��
� (28) 

 
and: 

 ��,� =
�

�
+

��

�
±

�

�
�−4�� − 8� −

��

��
� 

  (29) 
When t, a and b are replaced by their expressions, equations (28) and (29) become: 

 

 ��,� =
�

�
−

�

�
±

�

�
�
(���)�����(���)�����

�
 (30) 

  

 ��,� =
�

�
+

�

�
±

�

�
�
(���)�����(���)�����

�
 (31) 

 
where W is given by: 

 
 � = 2� 
 

= �
�

�
√3(�� + 3�� + 12�)�/�cos(�) −

�

�
� + �� =	�8�

√�

�
(�� + 3�� + 12�)�/� cos(�) +

�

�
��− 4� + ��  

 
or: 

 � = �8� − 4� + �� (32) 
   
 
and y and r by: 

 � = �	cos(�) +
�

�
�  

 

 � = �
����������

�
�
�/�

 (33) 

Let: 
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and 

 � =
�

�
�
(���)�����(���)�����

�
 

 
 

 The eigenvalues ��   (i =1 to 4) of matrix (6) become: 
  
 ��,� = � ± � (34) 
 
 ��,� = � ± � (35) 
 

We can now determine the expression of the partition function ��/�: 

  
 ��/� = ��	exp(−���) = ��� + ��� + ��� + ���  

 
Finally, when equations (31) and (32) are taken into account the partition function ��/� becomes:  

 
 ��/� = 2	exp(�)cosh(�) + 2	exp(�)cosh(�) (36) 

 
 

2.3 MAGNETIZATION                                    

2.3.1 MAGNETIZATION ALONG THE Z AXIS 

 
According to equation (4), longitudinal magnetization �� is given by the following expression: 

 

 �� = 〈��
�〉 =

����
����(����)

��/�
=

������������

���
=

������/��

���
 (37)  

 
After calculation the final expression of magnetization is given by: 

 

�� =
�

���(�)����(�)����(�)����(�)
[���exp(�)cosh(�) + ���exp(�)sinh(�) + ���exp(�)cosh(�) + ���exp(�)cosh(�) +

���exp(�)sinh(�)]  (38) 
 

where ���, ���, ���	and ��� are given by the following expressions. 

 

 For ��� we  have: 
 

 ��� =
��

���
=

�(���)

����
= −

��

����
 

 (since P is not dependent on λ’). 

  
Applying equation (32), we obtain: 

 

 
��

���
= �

�

�
(8� + �� − 4�)��/�	

�����������

���
� =

���

����
−

���

����
  

 
Similarly: 

 
��

���
= −5�′ 
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Thus the final expression of ���is: 

 

 ��� = −
�

�
�
���

����
+

��

�
�′� 

 
 
 

 For ��� we have: 
 

 ��� =
��

���
=

�

���
�2(� − �)

��

���
− 16

��

���
+

�����

����
+

����

����
−

�����

�����
−

������

�����
� 

 
 

Also:  

 � =
���

�
→ � −� = 4� 

  

 
��

���
=

�

�
∆�′ 

 
and 

 

 
��

���
=

���

����
+

��

�
�′ 

 
So the final expression of ��� is: 

 

��� =
�

���� �4[��
� − 2(� + ��)]

��

���
− 10[��� + 2(� + ��)�� + 9∆����]� =

�

����
�4(� − 2�)

��

���
− 10(� − 2�)�� +

�∆�����   (39) 

 
where: 

 
 � = ��� 
 

and � = � + �� 
 

 For ��� we have: 
 

 ��� =
��

���
=

�(���)

����
=

��

����
 

 
 

The final expression of G��	is: 
 

 ��� =
�

�
�
�

�

��

���
+

��

�
��� (40) 

 
 

 Finally, for ��� we have: 
 

 ��� =
��

���
=

�

���� �4[��
� − 2(� + ��)]

��

���
+ 10[��� + 2(� + ��)]�� − 9∆�����  

 
The final expression of G14 is: 

  

 ��� =
�

���� �4(� − 2�)
��

���
+ 10(� + 2�)�� − 9����� (41) 
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Since:  

 

 
��

���
= ���cos(�) + ���� −

�

�
�� (42) 

with:  

 

 ��� =
��

���
=

����
�
�����Г������∆�

��
  

and  

 ��� =
����(�)

���
= ���	sin(θ) 

 
  
 

it follows that ��� is given by: 

 

 ��� = −
��

���

������
=

�√�

�

������
� ������

(���)
�/�

������
  

 
where: 

 

 ����
���

���
=

���

�
��∆� +

��

�
��∆� +

���

�
��∆�Г� −

���

�
��Г� −

���

�
��Г� 

 

 ����
�(���)

���
=

��

�
��∆� +

��

�
��

�
+

��

�
��Г� 

 

And     Ψ� =
����

�

�(���)
� 

 
By solving equation (38) numerically we can trace the variation in longitudinal magnetization �� as a function of 

temperature for different values of the transverse field (�/�) and the crystal field (�/�). 

Figure 1 shows thermal variation of longitudinal magnetization for a fixed value of the crystal field (D/J=0.1) and with 
arbitrary values of the transverse field (�/� = 1, 2 and 3). We see that as the value of the transverse field (Ω/J) increases, 
longitudinal magnetization declines and the system moves to a lower critical temperature, showing the role of the transverse 
field in confining spins within the x,y plane. Figure 2 shows the thermal variation of longitudinal magnetization of the same 
system with a fixed value of the transverse field (�/� = 3) and for arbitrary values of crystalline anisotropy (�/�=1, 2 and 3). 
Here, as the value (�/�) increases the transition temperature of the system also increases. 

2.3.2 MAGNETIZATION ALONG THE X AXIS 

Transverse magnetization is calculated in the same way as longitudinal magnetization. Using equation (5) magnetization 
�� is expressed as: 
 

 �� = 〈��
�〉 =

����
�	���(���)

��/�
=

������������

�Г
=

������/��

�Г
 (43) 

 
 

The final expression of �� is: 
 
 �� = 

�

���(�)����(�)����(�)����(�)
[���exp(�)cosh(�) + ���exp(�)sinh(�) + ���exp(�)cosh(�) + ���exp(�)sinh(�)](44) 

  
where ���, ���, ��� and ��� are given  by the following equations: 
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For ���: 

 ��� =
��

�Г
=

�(���)

��Г
=

��

��Г
 

 
since p does not depend on Г. 

 

 ��� = −
�

�
�
���

��Г
+

��

�
Г� (45) 

 
 

For ���: 
 

 ��� =
��

�Г
=

�

���
�2(� − �)

��

�Г
−

����

�Г
+

�����

��Г
−

������

���Г
+

����

��Г
−

�����

���Г
�  

 
 

Replacing (� − �), 
��

�Г
 and 

��

�Г
 by their expression we obtain the final expression of 

 
 ���: 

 

 ��� =
�

���� �4[��
� − 2(�� + �)]

��

�Г
− 10[��� + 2(�� + �)]Г + 33∆��Г� 

 =
�

���
�4(� − 2�)

��

�Г
− 10(� + 2�)Г+ 33∆Г��� (46) 

 
 

For  ���: 
  

 	��� =
��

�Г
=

�

�
	
�(���)

�Г
=

�

�

��

�Г
 (47) 

 
 

The final expression of ���is given by: 

��� =
1

4
�
4

�

��

�Г
+
10

�
Г�

 
 

For ���: 

 

��� =
��

�Г
=

1

4���
�−4[��� − 2(� + ��)]

��

�Г
+ 10[��� + 2(� + ��)]Г− 33∆ГW�� 

 

 =
�

���� �−4(�
� − 2�)

��

�Г
+ 10(�� + 2�)Г− 33∆��Г� (48)

  
 

where: 

 
 �� = ��� (49) 
 

By solving equation (44) numerically we can trace the variation in transverse magnetization �� as a function of 
temperature, for various values of the crystal field and the transverse field. 
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Fig. 1. Thermal variation of longitudinal magnetization of a 3/2 spin system for a fixed value of crystalline anisotropy and 
various values of the transverse field 

 

Fig. 2. Thermal variation of longitudinal magnetization of a 3/2 spin system for a fixed value  
of the transverse field and various values of crystalline anisotropy 
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Fig. 3. Thermal variation of transverse magnetization of a 3/2 spin system for a fixed value of crystalline anisotropy and 
various values of the transverse field. 

. 

Fig. 4. Thermal variation of transverse magnetization of a 3/2 spin system for a fixed value of the transverse field and various 
values of crystalline anisotropy. 
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Figure 3 shows the thermal evolution of transverse magnetization of the 3/2 spin system, for a fixed value of the constant 
of crystalline anisotropy (�/� = 0.1) and with arbitrary values of the transverse field (�/� = 1; 2 and 3).  No transition is 
seen and transverse magnetization continues to decline asymptotically without reaching zero (within the temperature range 
examined). Figure 4 shows the thermal evolution of transverse magnetization for a fixed value of the transverse field 
(�/�	= 	3) and arbitrary values for the constant of crystalline anisotropy (�/� = 0.5; 1; 2; 3 and 3.5). We see that for high 
values of crystalline anisotropy, magnetization declines at low temperatures. This behavior indicates competition between 
the direction of quantification (z axis) and the energy associated with the transverse field.  

3 CONCLUSION 

Study of longitudinal magnetization of a 3/2 spin system as a function of temperature shows that: 

 With a constant crystal field and a transverse field with increasing variable values, magnetization decreases and 
the system transits at a critical temperature value. 

 With a constant transverse field and a crystal field with increasing variable values, the transition temperature 
increases.  

Study of transverse magnetization of the same 3/2 spin system as a function of temperature shows that: 

 With a constant crystal field and a transverse field with increasing variable values, no transition is observed.  

 With a constant transverse field and a crystal field with increasing variable values, magnetization decreases 
asymptotically. 
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