Soft πg -continuous Functions and irresolute Functions

Dr.I. Arockiarani and A. Selvi

Department of Mathematics, Nirmala College for Women, Coimbatore, India

Copyright © 2014 ISSR Journals. This is an open access article distributed under the *Creative Commons Attribution License*, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: The purpose of this paper is to define a new class of continuous functions called Soft π g-continuous functions and Soft π g-irresolute functions in soft topological spaces. We get several characterizations and some of their properties. Also we investigate its relationships with other soft continuous functions.

Keywords: Soft π g-closed set, Soft π g-open set, Soft π g-continuous functions, Soft π g-irresolute functions, Soft π g-open function, Soft π g-closed function.

1 INTRODUCTION

The concept of soft set theory has been initiated by Molodtsov[6] in 1999 as a general mathematical tool for modeling uncertainties. After the introduction of the notion of soft sets several researchers improved this concept. Topological structure of soft sets was initiated by Shabir and Naz[9] and studied the concepts of soft open set, soft interior point, soft neighborhood of a point, soft separation axioms and subspace of a soft topological space. Many researchers extended the results of generalization of various soft closed sets in many directions. Athar Kharal and B. Ahmad[3]defined the notion of a mapping on soft classes and studied several properties of images and inverse images of soft sets. In this present study, we discuss soft πg -continuous and soft πg -irresolute Functions in soft topological space and some of their properties.

2 PRELIMINARIES

DEFINITION 2.1[6]

Let U be the initial universe and P (U) denote the power set of U. Let E denote the set of all parameters. Let A be a nonempty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P$ (U). In other words, a soft set over U is a parameterized family of subsets of the universe U. For $\mathcal{E} \in A$, F (\mathcal{E}) may be considered as the set \mathcal{E} - approximate elements of the soft set (F, A).

DEFINITION: 2.2[6]

For two soft sets (F, A) and (G, B) over a common universe U, we say that (F, A) is a soft subset of (G, B) if (1) $A \cong B$ and (2) for all $e \in A$, F (e) and G(e) are identical approximations. We write (F, A) \cong (G, B). (F, A) is said to be a soft super set of (G, B), if (G, B) is a soft subset of (F, A). We denote it by (F, A) \cong (G, B).

DEFINITION: 2.3[6]

Two soft sets (F, A) and (G, B) over a common universe U are said to be soft equal if (F, A) is a soft subsetof (G, B) and (G, B) is a soft subset of (F, A).

DEFINITION: 2.4[6]

The union of two soft sets of (F , A) and (G, B) over the common universe U is the soft set (H, C), where $C = A \cup B$ and for all $e \in C$,

$$H(e) = \begin{cases} F(e) \ if e \in A - B \\ G(e) \ if e \in B - A \\ F(e) \cup G(e) \ if e \in A \cap B. \end{cases}$$

We write $(F, A) \cup (G, B) = (H, C)$.

DEFINITION: 2.5 [6]

The intersection (H, C) of two soft sets (F, A) and (G, B) over a common universe U, denoted (F, A) \cap (G, B), is defined as C = A \cap B, and H(e) = F (e) \cap G(e) for all e \in C.

DEFINITION: 2.6[6]

Then the soft closure of (F, E), denoted by cl(F, E) is the intersection of all soft closed supersets of (F,E).Clearly(F, E) is the smallest soft closed set over X which contains (F, E).

DEFINITION: 2.7 [9]

Let τ be the collection of soft sets over X, then τ is said to be a soft topology on X if (1) Φ , X belong to τ , (2) the union of any number of soft sets in τ belongs to τ , (3) the intersection of any two soft sets in τ belongs to τ . The triplet (X, τ , E) is called a soft topological space over X. Let (X, τ , E) be a soft space over X, then the members of τ are said to be soft open sets in X.

DEFINITION: 2.8 [9]

Let (X, τ, E) be a soft topological space over X and (F, E) be a soft set over X. The soft interior of (F, E), denoted by int (F, E) is the union of all soft open subsets of (F, E). Clearly (F, E) is the largest soft open set over X which is contained in (F, E).

DEFINITION: 2.9[5]

A subset (A,E) of a topological space X is called soft generalized-closed (soft g -closed) if $cl(A,E) \cong (U,E)$ whenever (A,E) $\cong (U,E)$ and (U,E) is soft open in X.

DEFINITION: 2.10[8]

A subset (A, E) of a topological space X is called soft regular closed , if cl(int(A,E))=(A,E). The complement of soft regular closed set is soft regular open set.

DEFINITION: 2.11[8]

The finite union of soft regular open sets is said to be soft π -open. The complement of soft π -open is said to be soft π -closed.

DEFINITION: 2.12[2]

A subset (A, E) of a topological space X is called soft πg -closed in a soft topological space (X, τ , E), if cl(A, E) \cong (U, E) whenever (A, E) \cong (U, E) and (U, E) is soft π -open in X.

DEFINITION: 2.13[1]

Let (F, E) be a soft set over X. The soft set (F, E) is called soft point, denoted by (x_e, E) , if for element $e \in E$, $F(e) = \{x\}$ and $F(e') = \varphi$ for all $e' \in E - \{e\}$.

DEFINITION: 2.14[10]

Let (X, τ, E) and (Y, τ', E) be two topological spaces. A function $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be Soft Semi continuous (Soft pre-continuous, Soft α -continuous, Soft β -continuous), if $f^{-1}(G, E)$ is soft semi open (soft pre-open, soft α - open, soft β -open) in (X, τ, E) for every soft open set (G, E) of (Y, τ', E) .

3 SOFT πg -Continuous Functions

DEFINITION: 3.1

Let (X, τ, E) and (Y, τ', E) be two topological spaces. A function $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be Soft regular continuous continuous(Soft π -continuous, Soft g-continuous, Soft π g-continuous), if $f^{-1}(G, E)$ is soft regular open(soft π -open, soft g-open, soft π g-open) in (X, τ, E) for every soft open set (G, E) of (Y, τ', E) .

THEOREM: 3.2

For a function $f: (X, \tau, E) \rightarrow (Y, \tau', E)$ the following hold

- 1) Every soft regular continuous function is soft π -continuous.
- 2) Every soft π -continuous function is soft continuous.
- 3) Every soft π continuous function is soft πg -continuous.
- 4) Every soft continuous function is soft g-continuous.
- 5) Every soft g-continuous function is soft π g-continuous.

Proof: Obvious

From the above result we have the following implication:

- (1) Soft g-continuous
- (2) Soft πg -Continuous
- (3) Soft π -continuous
- (4) Soft continuous
- (5) Soft regular continuous

The converse of the above is not true as shown in the following example:

EXAMPLE: 3.3

Let X = Y= {h₁, h₂, h₃}, E= {e₁, e₂}. Then $\tau = {\widetilde{\emptyset}, \widetilde{X}, (F_1, E) (F_2, E), (F_3, E), (F_4, E)}$ is a soft topological space over X and $\tau' = {\widetilde{\emptyset}, \widetilde{Y}, (G_1, E), (G_2, E), (G_3, E), (G_4, E)}$ is a soft topological space over Y. Here (F₁, E), (F₂, E), (F₃, E), (F₄, E) are soft sets over X and (G₁, E), (G₂, E), (G₃, E), (G₄, E) are soft sets over Y defined as follows: F₁(e₁) = {h₂}, F₁(e₂) = {h₁}; F₂(e₁) = {h₂, h₃}, F₂(e₂) = {h₁, h₂}; F₃(e₁) = {h₃}, F₃(e₂) = {h₁, h₃}; F₄(e₁) = {\emptyset}, F₄(e₂) = {h₁} and G₁(e₁) = {h₂}, G₁(e₂) = {h₁}; G₂(e₁) = {h₂, h₃}, G₂(e₂) = {h₁, h₂}; G₃(e₁) = {h₁, h₂}; G₃(e₂) = { X}; G₄(e₁) = { h₂}, G₄(e₂) = { h₁, h₂}. If the function f : (X, \tau, E) → (Y, \tau', E) be an identity function then f is soft π -continuous, since the inverse image of soft open sets in Y are not soft π -open sets in X.

EXAMPLE: 3.4

Let X = Y= { x_1, x_2, x_3 }, E= { e_1, e_2 }. Then $\tau = \{\widetilde{\emptyset}, \widetilde{X}, (F_1, E), (F_2, E), (F_3, E)\}$ is a soft topological space over X and $\tau' = \{\widetilde{\emptyset}, \widetilde{Y}, (G_1, E), (G_2, E)\}$ is a soft topological space over Y. Here (F₁, E), (F₂, E), (F₃, E) are soft sets over X and (G₁, E), (G₂, E) are soft sets over Y defined as follows: F₁(e₁) = { x_1 }, F₁(e₂) = { x_1 }; F₂(e₁) = { x_2 }, F₂(e₂) = { x_2 }; F₃(e₁) = { x_1, x_2 }, F₃(e₂) = { x_1, x_2 } and G₁(e₁) = { x_1, x_2 }, G₁(e₂) = { x_1, x_2 }, G₂(e₁) = { x_1, x_2 }. If the function f : (X, τ, E) \rightarrow (Y, τ', E) is defined as f(x_1) = $x_1, f(x_2) = x_3$, f(x_3) = x_2 then f is soft π g-continuous but not soft g-continuous, since the inverse image of soft open sets in Y are not soft g-open sets in X.



THEOREM: 3.5

Let $f: (X, \tau, E) \rightarrow (Y, \tau', E)$ be a function. Then the following are Equivalent:

- 1) f is soft π g-continuous.
- 2) The inverse image of each soft open set in (Y, τ', E) is soft π g-open in (X, τ, E) .

Proof:

Suppose f is soft π g-continuous. Then it follows from the definition that inverse image of every soft closed set (G,E) of Y is soft closed. Hence Y–(G,E) is soft open in Y. Therefore inverse image of every soft open set in Y is soft π g-open in X.

THEOREM: 3.6

If a function $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ is soft π g-continuous if and only if $f(\tilde{S}\pi g\text{-cl}(F, E)) \cong cl(f(F, E))$ for every soft open set (F, E) of X.

Proof:

Let $f: (X, \tau, E) \to (Y, \tau', E)$ be soft πg -continuous and $(F, E) \subset X$. Then cl(f(F, E)) is soft closed in Y. Since f is soft πg -continuous, $f^{-1}(cl(f(F,E)))$ is soft πg -closed in X and $(F, E) \subset f^{-1}(f(F, E)) \subset f^{-1}(cl(f(F,E)))$. As πg -cl(F,E)) is the smallest soft πg -closed set containing $(F, E), \pi g$ -cl(F,E)) $\subset f^{-1}(cl(f(F,E)))$. Hence $f(\tilde{S}\pi g$ -cl(F,E)) $\subset cl(f(F,E))$.

Conversely,

Let (G, E) be any soft closed set of Y. Then $f^{-1}(G, E) \in X$ and so $f(\tilde{S}\pi g\text{-cl}(f^{-1}(G,E))) \subset cl(f(f^{-1}(G,E)))$. Therefore $f(\tilde{S}\pi g\text{-cl}(f^{-1}(G,E))) \subset cl(G,E)$ which implies that $\tilde{S}\pi g\text{-cl}(f^{-1}(G,E)) \subset f^{-1}(G,E)$. In general $f^{-1}(G, E) \subset \tilde{S}\pi g\text{-cl}(f^{-1}(G,E))$. Thus $f^{-1}(G,E) = \tilde{S}\pi g\text{-cl}(f^{-1}(G,E))$. Hence $f^{-1}(G,E)$ is soft $\pi g\text{-closed}$. Therefore f is soft $\pi g\text{-continuous}$.

THEOREM: 3.7

If a function $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ is soft πg -continuous if and only if f^{-1} (int(G,E)) $\cong (\tilde{S}\pi g$ -int(f^{-1} (G, E))) for every soft open set (G, E) of X.

Proof:

Let $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ be soft π g-continuous. Now int(f(G, E)) is a soft open set of Y.

Then by the soft πg -continuity of f, f^{-1} (int(f(G,E))) is soft πg -open and f^{-1} (int(f(G,E))) \cong (G, E). As $\tilde{S}\pi g$ -int (G, E) is the largest soft πg -open set contained in (G, E), $f^{-1}(int(f(G,E))) \cong \tilde{S}\pi g$ -int(G, E).

Conversely,

Assume that f^{-1} (int(G,E)) \cong ($\tilde{S}\pi$ g-int(f^{-1} (G, E))) for every soft open set (G, E) of X.

Then $f^{-1}(G, E) \cong \tilde{S}\pi$ g-int $(f^{-1}(G, E))$. In general $\tilde{S}\pi$ g-int $(f^{-1}(G, E)) \cong f^{-1}(G, E)$. Therefore

 $f^{-1}(G, E) = \tilde{S}\pi g$ -int $(f^{-1}(G, E))$. Hence $f^{-1}(G, E)$ is soft πg -open. This proves that f is soft πg -continuous.

REMARK:3.7

The composition of two soft π g-continuous function need not be soft π g-continuous in general .

4 SOFT πg -IRRESOLUTE FUNCTIONS

DEFINITION: 4.1

A function $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ is soft πg -irresolute, if $f^{-1}(G, E)$ is soft πg -open in (X, τ, E) for every soft πg -open set (G, E) of (Y, τ', E) .

THEOREM: 4.2

Every soft π g-irresolute function is soft π g-continuous.

Proof: Obvious.

The converse of the above theorem need not be true as shown in the following example:

EXAMPLE: 4.3

Let X = Y= { x_1, x_2, x_3 }, E= { e_1, e_2 }. Then $\tau = {\tilde{\emptyset}, \tilde{X}, (F_1, E), (F_2, E), (F_3, E)}$ is a soft topological space over X and $\tau' = {\tilde{\emptyset}, \tilde{Y}, (G_1, E), (G_2, E)}$ is a soft topological space over Y. Here (F₁, E), (F₂, E), (F₃, E) are soft sets over X and (G₁, E), (G₂, E) are soft sets over Y defined as follows: F₁(e₁) = { x_2 }, F₁(e₂) = { x_1 }; F₂(e₁) = { x_1, x_3 }, F₂(e₂) = { x_2, x_3 }; F₃(e₁) = { x_2 }, F₃(e₂) = {X}; F₄(e₁) = { \emptyset }, F₄(e₂) = { x_1 ; F₅(e₁) = { x_1, x_3 }, F₅(e₂) = {X}; F₆(e₁) = { \emptyset }, F₆(e₂) = { x_2, x_3 }; F₇(e₁) = { \emptyset }, F₇(e₂) = {X} and G₁(e₁) = { x_2 }, G₁(e₂) = { x_1 ; G₂(e₁) = { x_1, x_3 }, G₂(e₂) = { x_2, x_3 }; G₃(e₁) = { x_2 }, G₃(e₂) = { x_1 ; G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₁) = { x_2 }, G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₁) = { x_2 , G₃(e₂) = { x_1 ; G₃(e₁) = { x_2 , G₃(e₁) =

THEOREM: 4.4

Let $f:\ (X,\tau,E)\to (Y,\tau',E)$ and $g:\ (Y,\tau',E)\to (Z,\tau'',E)$ be any two functions. Then

- **1.** $g \circ f$ is soft πg -ccontinuous if f is soft πg -irresolute and g is soft πg -continuous.
- **2.** $g \circ f$ is soft π g-irresolute if both f and g are soft π g-irresolute.
- **3.** $g \circ f$ is soft π g-continuous if g is soft continuous and f is soft π g-continuous.

Proof: Straight forward

DEFINITION: 4.5

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft π g-open function, if the image of every soft open set in X is soft π g-open in Y.

DEFINITION: 4.6

A function $f: (X, \tau, E) \rightarrow (Y, \tau', E)$ is soft πg -closed function, if the image of every soft closed set in X is soft πg -closed in Y.

THEOREM: 4.7

A function $f : (X, \tau, E) \rightarrow (Y, \tau', E)$ is soft πg -open if and only if $f(int(F, E)) \cong \tilde{S}\pi g$ -int(f(F, E)) for every soft set (F, E) of E.

Proof:

Let $f: (X, \tau, E) \to (Y, \tau', E)$ be soft πg -open. Then $f(int(F, E)) = \tilde{S}\pi g$ -int $(f(int(F, E))) \cong \tilde{S}\pi g$ -int(f(F, E)).

On the other hand,Let (F, E) be soft open set of X. Then $f(F, E) = f(int(F, E)) \subset \tilde{S}\pi g-int(f(F, E))$. Hence f(F, E) is soft πg -open in Y.

THEOREM: 4.8

A function $f(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft πg -closed if and only if $\tilde{S}\pi g$ -cl(f(F, E)) \cong f(cl(F, E))

for every soft set (F, E) of E.

Proof:

Let $f: (X, \tau, E) \rightarrow (Y, \tau', E)$ be soft π g-closed. Then $\tilde{S}\pi$ g-cl(f(cl(F, E))) = $\tilde{S}\pi$ g-cl(f(F, E)) \cong f(cl(F, E)).

On the other hand,Let (F, E) be soft closed set of X. Then $\tilde{S}\pi g$ -cl(f(F, E)) \cong f(cl(F, E)) = f(F, E) . Hence f(F, E) is soft πg -closed in Y.

THEOREM: 4.9

A function $f:\ (X,\tau,E) \to (Y,\tau',E)$ be a bijection. Then the following are equivalent:

- (1) f is soft π g-open.
- (2) f is soft π g-closed.
- (3) f^{-1} is soft π g-continuous.

Proof:

(1) ⇒ (2)

Let (F, E) be soft closed set in X and f be a soft π g-open .Then X–(F, E) is soft open in X. Since f is soft π g-open, f(X–(F, E)) is soft π g-open set in Y. Then Y– f(X–(F, E)) = f(F, E) is soft π g-closed in Y. Hence f is soft π g-closed.

(2) ⇒ (3)

Let (F, E) be soft closed set in X and f be a soft π g-closed. Then f(F, E) is soft π g-closed set in Y. If f(F, E) = $(f^{-1})^{-1}$ (F, E), then f^{-1} is soft π g-continuous.

(3) ⇒ (1)

Suppose f^{-1} is soft π g-continuous. Let (F, E) be soft open in X. Since f^{-1} is soft π g-continuous, $(f^{-1})^{-1}$ (F, E)= f(F, E) is soft π g-open in Y. Therefore f is soft π g-open.

THEOREM: 4.10

Let $f: (X, \tau, E) \rightarrow (Y, \tau', E)$ be soft closed and $g: (Y, \tau', E) \rightarrow (Z, \tau'', E)$ be soft πg -closed then $g \circ f$ is soft πg -closed.

Proof:

Let (F, E) be soft closed in X. Then f(F, E) is closed in Y. Since g is soft π g-closed, g(f(F, E)) is soft π g-closed in Z. Then $g \circ f$ is soft π g-closed.

THEOREM: 4.11

Let $f: (X, \tau, E) \rightarrow (Y, \tau', E)$ be soft open and $g: (Y, \tau', E) \rightarrow (Z, \tau'', E)$ be soft πg -open then $g \circ f$ is soft πg -open.

Proof:

Let (F, E) be soft open in X. Then f(F, E) is soft π g-open in Y. Since g is soft π g-open,

g(f(F, E)) is soft π g-open in Z. Then $g \circ f$ is soft π g-open.

REFERENCES

- [1] C.G. Aras and A. Sonmez, On soft mappings, arXiv:1305.4545,(2013).
- [2] I.Arockiarani and A.Selvi, Soft π g-operators in soft topological spaces, International Journal of Mathematical archive, 5(4) (2014), 37-43.
- [3] Athar Kharal and B. Ahmad, Mappings on soft classes, arXiv:1006.4940(2010).
- [4] E.Ekici, C.W. Baker, On π g-closed sets and continuity, Kochi J. Math., 2007(2)35-42.
- [5] K. Kannan, "Soft Generalized closed sets in soft Topological Spaces", Journal of Theoretical and Applied Information Technology, 37 (2012), 17-20.
- [6] D.Molodtsov, "Soft set Theory- First Results" Computers and Mathematics with Applications (1999), 19-31.
- [7] Saziye Yuksel, Naime Tozlu, Zehra Guzel regul, On soft generalized closed sets in Soft topological Spaces", Journal of Theoretical and Applied Information Technology, 37 (2012), 17-20.
- [8] A.Selvi and I. Arockiarani, Soft πg-closed sets in soft topological spaces, 79th Annual Conference of Indian Mathematical Society, December 28-31, 2013.

- [9] M.Shabir and M. Naz , On Soft topological spaces, Computers and Mathematics with Applications(2011), vol.61, Issue 7, 1786-1799.
- [10] Y.Yumak, A.K. Kayamakci, Soft β -open sets and their application, arXiv:1312.6964(2013).
- [11] I. Zortlutuna, M. Akday, W.K.Min, S.Atmaca, Remarks on soft topological spaces, Annals of fuzzy mathematical and Informatics, 3(2012) 171-185.