
International Journal of Innovation and Applied Studies
ISSN 2028-9324 Vol. 10 No. 2 Feb. 2015, pp. 649-655
© 2015 Innovative Space of Scientific Research Journals
http://www.ijias.issr-journals.org/

Corresponding Author: Jalil Abbas 649

Recovery of Metrics by using Reverse Engineering

Jalil Abbas
1
, Rabia Mehdi

2
, Sana-ul-Haq

3
, and M. Mutahhar Saeed

4

1
Department of Computer Science & IT,

Govt. College University Faisalabad (Layyah Campus),
Layyah,Punjab, Pakistan

2
Department of Mathematics,

Gomal University Dera Ismail Khan,
D.I.Khan, KPK, Pakistan

3
Department of IECS,

UST Bannu University,
Bannu, KPK, Pakistan

4
Department of Computer Science,

Qurtuba University, Dera Ismail Khan,
D.I.Khan, KPK, Pakistan

Copyright © 2015 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: Reverse Engineering is the process which recovers the design artifacts of a software system by using its Size of

source code, Available source code type, Abstraction level, Documentation type support. This research focus on the different
case studies of recovery of Metrics and is elaborated by using the method of Reverse Engineering, to measure the complexity
of the recovery of artifacts for the maintenance task. During this process of analyzing a subject system and in this way
representation of a system is created at a higher level of abstraction. It represents an overview of the yield of reverse
engineering and reviews cardinal achievement and areas of application, shedding light on key open research issues of the
future.

KEYWORDS: Design artifacts, Source code, Abstraction level, Recovery, Documentation

1 BACKGROUND

Software artifact recovery is the ability that describes and follows the life of an artifact requirements, code, tests models
reports and plans developed during the software lifecycle in both forward and back word. Artifact recovery can provide
insight into system development and evolution in order to assist in both top bottom and bottom up program comprehension,
impact analysis, reuse of existing software, which gives support in understanding the relationships existing within and across
software requirements design and implementation [1]. Inadequate Metrics recovery is one of the main factors that
constitutes to project overruns and failure [2]. Although several research and commercial tools are available that support
Metrics recovery. The need to provide the software engineer with methods and tools supporting Metrics recovery has been
widely recognized [3]. The rationale behind them is the fact that most of the software documentation is text based or
contains textual descriptions and that programmer’s use meaningful domain term to define source code identifiers. This
research focus on the different Case studies of Anti viruses; Simple Machine Protect Antivirus Case Study, AviGen Antivirus
Case Study, CS Antivirus Case Study and it generates valuable results.

Recovery of Metrics by using Reverse Engineering

ISSN : 2028-9324 Vol. 10 No. 2, Feb. 2015 650

Reverse Engineering (RE) is the process of discovering the technological principles of a device, object or system through
analysis of its structure, function and operation. It often involves taking something (e.g. a mechanical device, electronic
component, or software program) apart and analyzing its workings in detail, used in maintenance or to try to make a new
device or program that does the same thing without copying anything from the original[10]. Metrics are a set of quantifiable
parameters which are used to measure the effectiveness of a project or undertaking. Values are obtained for the parameters
for multiple instances of the same entity and they are compared and interpreted as to the change in the effectiveness.

2 MATERIAL AND METHODS

Reverse Engineering Abstraction Methodology (REAM) recovers the design artifacts and help to represent the artifacts of
varying details at the domain, functional, structural and implementation Abstractions levels. This method consists of 5-
models, High level, Functional, Architectural, Source Code and Mapping Models. The High Level Model use Object Oriented
Techniques for the Complexities, which defines Classes and Functions through which we derive Metrics and different Line of
Codes [9]. The Functional Model directly deals with the functionality of any system. The Architectural Model is developed
using the High-Level Model, Functional Model and from the source code. An Architectural Model defines the structural
relationship between the components that together creates the system [4].

Figure 1: REAM System

2.1 ARTIFACT RECOVERY COMPLEXITY (ARC)

 The artifact recovery complexity depend on size of source code, degree of source code type, abstraction level and the
degree of available document support to recover the artifacts for the task at hand[7].

 Recover-ness: The task is to identify the components of the system and then relates with each other. Recover-
ness is degree of the artifacts that are related to the maintenance task that we have performed in all over the
system [5].

 Size of source code: Size of source code from which the artifacts are recovered for maintenance task, the table
given below shows the total size of source code and description of source code.

Table 1: Source Code Size

Size category Description

Small Few thousand line of code

Medium More than 1000 line of code

Large More than 10,000 line of code

Very large More than 1 Million line of code

Jalil Abbas, Rabia Mehdi, Sana-ul-Haq, and M. Mutahhar Saeed

ISSN : 2028-9324 Vol. 10 No. 2, Feb. 2015 651

 Available source code type: The table given below shows the available source code type and description of
source code. It defines available source code types.

Table 2: Source Code Type

 Artifact abstraction level: These artifacts extracted at various levels of implementation, structural, functional and
domain level for the recovery [6].

Table 3: Artifact Abstraction Level

Abstraction level Description

Domain Level High-Level entities describe the domain level information.

Functional Level Understand the functionality of the software system that aids the reverse
engineering process.

Structural Level Structural relation between the individual components that together
creates the system as a whole. e.g., metrics recovery architecture

Implementation level Object oriented Classes and Functions.

 Documentation Type Support: Each and every thing documented has been defined separately. Table shows the
degree to which the available document supports to recover the artifact for maintenance task.

Table 4: Documentation Type Support

Doc. Type Support Documentation contain Weight

No documentation No document supports the task. 0

Minor Only system/ component detail. 1

Medium Some requirements, Design & implementation details exist for support. 2

High Requirements, Design & implementation details support fully the recovery task. 3

2.2 DESIGN RECOVERY TOOL (DRT)

 Design Recovery Tool (DRT) is a special REAM tool used for the source code extraction and high-level artifacts. User also
uses this tool for the recovery of design artifacts. The tool allows the user to extract the artifacts from the source code. The
main task is to identify different design artifacts. In this perspective there are some of design artifacts that are related to
design and user will extract these artifacts from the source code during the Reverse Engineering process. Four levels of
abstraction that scope the system artifacts are,

I. Architecture Artifacts

II. Requirement Artifacts

III. Design Artifacts

IV. Implementation Artifacts

 The classes are used for different types of functionalities. Main purpose to show classes is that Differentiate between
different types of classes and the functions. These classes have been taken separately from different levels of abstraction.

Available source code type Description Weight

Mix-mode. The source code is written in multiple languages. 5

Dialects. The available source code is written in different dialects. 4

Incomplete The complete source code is not available. 3

Errors. The code contain errors and cannot be compiled 2

Normal. The source code exists in a single language 1

Recovery of Metrics by using Reverse Engineering

ISSN : 2028-9324 Vol. 10 No. 2, Feb. 2015 652

2.3 CASE STUDIES

 Followings are the case studies which are conducted in this report with more explained form.

I. Simple Machine Protect (SMP) Antivirus Case Study

II. AviGen Antivirus Case Study

III. CS Antivirus Case Study

2.3.1 CASE STUDY -1

Simple Machine Protect Antivirus Case Study

Simple Machine Protect is portable antivirus software for your Windows Operating System, built to remove certain
variant of virus, worm, Trojan and Spyware from your computer. Protect Simple Machine is just that a portable and free anti-
virus application that fits on your USB pen and makes sure that the computer you are using is not infected by viruses, worms,
Trojan horses or spyware. Created with Visual Basic, the program is incredibly simple to use and can analyze any folder or
disk you choose [6]. Nowadays, one of the most important areas to scan is the memory and Simple Machine Protect also
caters for this with a memory scanner which works alongside the disk scanner. The program warns you if it finds a virus with
a very primitive "beeping" sound and it can sometimes repair them on the spot, depending on whether the database is
equipped with a sufficient solution. At all times, the program lets you know at what stage the scan is at with a progress bar.

 Maintenance Task: It identifies the components of the system and relationship among them to understand the
system for maintenance.

 Available Documentation Type Support : Available documentation type support (DTS) is available. Minor
Documentation is available and its weight is 1.

 Available Source Code Type (SCT) : It is in Mix-Mode. Recovered system is implemented in a multiple languages.
E.g. C, C++, Java, HTML and its weight is 5.

 Size of Source Code: Total size of source code (SSC) is 149,380 LOC. Source code category is Large. Its weight is 3.

 Abstraction Level: Different Artifacts of Simple Machine Protect Antivirus recovered at Functional level for the
maintenance task i.e.,3.

 High Level Model: In High level Model we discussed Methodologies / Techniques facing complexity problems in
the presence of utilizing UML (Unified Modeling Language) and how to solve the modeling language Metrics
Recovery.

 Extraction: Class diagram is static and logical model included Functions, Methods, behaviors and attributes.

Table 5: SMP Case Study ARC table

Case Study No: 1

Total Size of Source Code (SSC) 3

Available Source Code Type (SCT) 5

Artifacts Abstraction Level (AL) 3

Available Doc. Type Support(DTS) 1

Artifact Recovery Complexity (ARC)=SSC +SCT+AL-DTS 3+5+3-1 = 10

2.3.2 CASE STUDY -2 AVIGEN ANTIVIRUS CASE STUDY

 A comprehensive antivirus tool is created to ensure the security of your PC that will not be infected by all external
threats.This software will protect your computer form various types of mal-ware, while still offering you the possibility to add
viruses to the list or edit the virus definition

 Maintenance Task: It identifies the components of the system

 Available Documentation Type Support (DTS) : Available documentation support is available. Minor
documentation type is available and its weight is 1.

 Available Source Code Type: Available source code type (SCT) is Normal implemented in a single language and its
weight is 1.

 Size of Source Code: Size of source code is 220,535 and the category is Large .Its weight is 3

Jalil Abbas, Rabia Mehdi, Sana-ul-Haq, and M. Mutahhar Saeed

ISSN : 2028-9324 Vol. 10 No. 2, Feb. 2015 653

 Abstraction Level: Artifacts of AviGen antivirus are recovered at Implementation level for the maintenance task
i.e. 1

 High-Level Model: High-level Model is developed using Functional descriptions.

 Extraction: Class diagram being a static model having different functions and methods.

Table 6: AviGen Case Study ARC Table

Case Study No. 2

Total Size of Source Code (SSC) 3

Available Source Code Type (SCT) 1

Artifacts Abstraction Level (AL) 1

Available Doc. type Support (DTS) 1

Artifact Recovery Complexity (ARC)=SSC +SCT+AL-DTS 3+1+1-1 = 4

2.3.3 CASE STUDY -3 CS ANTIVIRUS CASE STUDY

 The departmental mail servers use Clam Antivirus to scan all incoming/outgoing email messages. This includes scanning
email bodies and attachments against known virus signatures as well as blocking certain MIME types and names (file
extensions). The software will also scan compressed attachments.

 Maintenance Task: Identify the components of the system

 Available Documentation Support: Minor documentation type support (DTS) is available and its weight is 1.

 Available Source Code Type: Available source code type (SCT) is in Dialects and written in different languages and
its weight is 4.

 Source Code Size: Size of source code (SSC) is 370,425 and the category is large. Its weight is 3.

 Abstraction levels: Artifacts of CS Antivirus are recovered at structural level for the maintenance task. i.e. 2

 High-level Model: The Software engineer developed a high-level model using the experience and knowledge.

 Extraction: Recovered classes are presented in UML.

Table 7: CS Antivirus ARC value Table

Case Study # 3

Total Size of Source Code (SSC) 3

Available Source Code Type (SCT) 4

Artifacts Abstraction Level (AL) 2

Available Doc. type Support (DTS) 1

Artifact Recovery Complexity (ARC)=SSC +SCT+AL-DTS 3+4+2-1=8

3 RESULTS AND DISCUSSION

 It is observed that maximum SMP value is 10 which is less than 13 and it shows that highest value of AviGen Antivirus
and CS Antivirus are relative 4, 8 which is less than 13.

SSC SCT AL DTS

Large Mix-Mode Functional Level Minor

3 5 3 1

Putting values in Formula;

ARC = SSC + SCT+ AL - DTS

 = 3 + 5 + 3 - 1

 =11 – 1

ARC =10

Recovery of Metrics by using Reverse Engineering

ISSN : 2028-9324 Vol. 10 No. 2, Feb. 2015 654

Medium value: It is observed that Medium value is 8 which is less than 13.

SSC SCT AL DTS

Large Dialects Structural level Minor

3 4 2 1

Putting values in Formula;

ARC = SSC + SCT+ AL - DTS

 = 3 + 4 + 2 - 1

 = 9 – 1

ARC = 8

Lowest value: It is observed that the lowest value is 4 which are also less than 13.

SSC SCT AL DTS

Large Normal Implementation level Minor

3 1 1 1

Putting values in Formula:

ARC = SSC + SCT+ AL - DTS

 = 3 + 1 + 1 - 1

 = 5 – 1

 ARC = 4

The above said data can be represented in a graphical manner. Representation of this data in a Bar graph by using
software SPSS.

Bar Graph

 Y-axis represents highest value 10 which I have
calculated during my analysis and this value has been
shown in the graph on Y-axis.

 Y-axis represents Medium value 8 which is to be found
in my analysis and this value is visible in the graph on Y-axis.

 Y-axis represents lowest value 4 and this value is also
visible in the graph on Y-axis.

4 CONCLUSION

This research describes and highlights a case study of Recovery of Metrics, which uses the methodology for reverse
engineering that recovers the design artifacts of a software system. The critical analysis of ARC tool represents that each and
every value of the case study is within the range of 0-13 and Simple Machine Protect Antivirus case study has the highest
value which is 10, CS- Antivirus has Medium value i.e. 8 and AviGen Antivirus has the lowest value which is 4. This analysis
and its conclusion are also represented graphically.

This research further focuses on the advance software re-engineering techniques or agile technology to performance
based software quality measures. The reverse engineering method described in the future would be applied to a variety of
frameworks in order to truly validate its potential.

0 2 4 6 8 10

high

medium

Low

ca
se

s

Comparitive study

Jalil Abbas, Rabia Mehdi, Sana-ul-Haq, and M. Mutahhar Saeed

ISSN : 2028-9324 Vol. 10 No. 2, Feb. 2015 655

ACKNOWLEDGEMENT

 Authors are grateful to respectable Prof: Syed Ghulam Qasim Shah who reviewed our research work.

REFERENCES

[1] PALMER, J. D. Traceability In Software Requirements Engineering, Second Edition, R. H.Thayer and M. Dorfman, Eds.
IEEE Computer Society Press, Los Alamitos, CA, 412–422, 2000

[2] DOMGES, R. AND POHL, K. Adapting traceability environments to project specific needs. Commun. ACM 41, 12, 55–62,
1998

[3] HOLAGENT CORPORATION, .RDD-100, http://www.holagent.com/products/product1.html, 2006
[4] Nadim Asif, Mark Dixon, Janet Finlay, George Coxhead “Recover the Design Artifacts”, Proceedings of the International

Conference of Information and Knowledge Engineering (IKE 02), pp 656-662, Las Vegas, June 24-27, 2002.
[5] M. Bechter, M. Blum, H. Dettmering and B.Stützel: “Compatibility models”. Proc. 3rd Intl. Workshop on SW Engineering

for Automotive Systems, pp.5-12, 2006.
[6] D. Binkley, Source code analysis: A road map. In ICSE -Future of SE Track 2007
[7] Asif, N. Design Artifacts Recovery Techniques, International Journal of Software Engineering (JSE). Vol. 1 No 1, 2007.
[8] Asif, N. Developing High Level Models for Artifacts Recovery and Understanding Using the Statistical Information, In

proceedings of 8
th

 Islamic Countries Conference on Statistical sciences (ICCS-VII) , Dec 19
th

 –23
rd

 , ISOSS Press, (2005C)
[9] J. Beck, “Interface sticing: a static program analysis tool for software engineering,” PhD diss., Dept. Stat. & Computer

Sci.,West Virginia Univ., 1993
[10] Asif, N. Reverse Engineering Methodology to Recover the Design Artifacts: A Case Study. In proceedings of International

Conference on Software Engineering Research and Practice (SERP03) , 23
rd

 –26
th

 june, Las Vegas, Nevada,pp.932-
938,2003

