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ABSTRACT: This paper investigates the effect of peristaltic flow of a Jeffrey nanofluid in endoscope. The flow is streaming
through a tapered artery having a mild stenosis. The influences of heat and nanoparticle concentration on blood flow are also
taken into account. Both velocity and thermal slip conditions are considered. The governing equations of motion, energy and
nanoparticles are based on a perturbation technique. This technique depends on two parameters. Firstly, the amplitude
ratio. Secondly, the small wave number. The distributions of the axial velocity, temperature and nanoparticle volume fraction
are analytically derived. The pressure rise and friction force are numerically calculated. The numerical calculations are
adopted to obtain the effects of several physical parameters, such as the slip parameter, Brownian motion parameter,
thermophoresis parameter, the Reynolds number, the taper angle, nanoparticles Rayleigh number, thermal Rayleigh number
and the maximum height of stenosis. It is found that the axial velocity increases with the decrease of the slip parameter.
Meanwhile, it increases with the increase of both the nanoparticles Rayleigh number and the thermal Rayleigh number in the
region of stenosis. The stream lines are also depicted. It is observed that the trapped bolus decreases in size with the
increase of both the Brownian motion parameter and the thermophoresis parameter. In addition, the trapped bolus
increases in size with the increase of both the maximum height of stenosis and the taper angle.

KEYWORDS: Peristaltic flow; Jeffrey model; Tapered artery; Stenosis flow; Nanoparticles; Slip condition; Heat transfer;
Trapping phenomena.

1 INTRODUCTION

Several researches studied the non-Newtonian fluids because of their importance in industrial and technological
applications. Such fluids have a nonlinear relationship between the stress and the rate of strain. Jeffrey model is considered
as the simplest non-Newtonian fluid model. It is preferred to describe flow of physiological fluids in tubes and channels.
Jeffrey model is a relatively linear model in which the time derivatives are used instead of convected derivatives. It has many
industrial applications [1], such as notably polymer systems (melt and solutions) and multi-phase system such as foams,
emulsions, and slurries. Also, we may considered it as a blood model. In recent years, several researchers have studied
Jeffrey fluid under different conditions. Vajravelu et al. [2] investigated the peristaltic flow of a Jeffrey fluid in a vertical
porous stratum with heat transfer under long wavelength and low Reynolds number assumptions. They found that the
effects of the lJeffrey number, the Grashof number, the perturbation parameter, and the peristaltic wall deformation
parameter have the strongest effects on the trapping bolus phenomenon. Furthermore, Lalitha Jyothi et al. [3] have
considered the pulsatile flow of a Jeffrey fluid in a circular tube lined internally with porous material. They calculated the
velocity and the flux of the fluid flow. Also, they found that the concentration is dragged towards the velocity profiles of the
fluid flow in the tube.

The word "peristalsis" comes from a Greek word "Peristaltikos" which means clasping and compressing. Peristalsis is a
well known mechanism for fluid transport in physiology. In this mechanism, sinusoidal waves travel on the walls of the tubes.
It very useful in preventing the fluid from being contaminated over short distance. Furthermore, peristaltic has several
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industrial applications [4], such as roller and finger pumps, nuclear industry for the transport of corrosive fluids, blood pump
machine and heart lung machine. In addition, it is very important in biological mechanism which responsible for various
physiological functions of the organs of the human body. It has many physiological activities [5], such as the transport of fluid
through lymphatic vessels and transport deionized water and whole blood and deliver phosphated buffered saline into the
vein of a rat. Also, the transport of urine from kidney to bladder, transport of food through oesophagus, the movement of
eggs in the fallopian tube, transport of the spermatozoa in the cervical canal, transport of blood in heart, transport of bile in
the bile duct are considered as another physiological applications. Several theoretical and experimental articles have been
examined the peristaltic flows, such as Shapiro [6] and Manton [7]. Their works considered several assumptions, such as long
wavelength approximation, low Reynolds number, small wave number and small amplitude ratio.

Blood flow in the artery has some important aspects due to the medical applications. It is a mixture of red cells, white
cells and platelets in plasma. It is the bodily fluid which delivers nutrient and oxygen to the cells and transport waste
products away. The hemodynamic behavior of the blood flow is influenced by the presence of arterial stenosis. A stenosis is
the abnormal growth of tissue. Stenosis means narrowing of any body passage [8]. stenoses may be caused by the
impingement of extra vascular masses. Also, it may be formed due to intravascular atherosclerotic plaques which develop at
the wall of the artery and protrude into the lumen. It may leads to blood clot, cerebral strokes or heart attack, myocardial
infarction and heart failure by reducing or occluding the blood supply [9]. Furthermore, stenosis may damage the internal
cells of the wall. Several efforts have been made to investigate the blood flow characteristics through stenosed arteries.
Chakravarty et al. [10] investigated the problem of nonlinear blood flow in a stenosed flexible artery. Also, Verma and Parihar
[11] discussed the mathematical model of blood flow through a tapered artery with mild stenosis.

Heat transfer analysis is one of the important topic in industrial research and studying chemical engineering. It is the
passage of thermal energy from a hot body to a colder one. Bio-heat is considered as heat transfer in human body. It includes
thermotherapy and human thermoregulation system [12]. The thermotherapy system is on of the most important application
of heat in the human body. The applications of heat (hyperthermia), radiation (laser therapy) and coldness (cryosurgery) help
to destroy undesirable tissues including cancer. In physiology, heat transfer is used to study the properties of tissues. The
processes of oxygenation and hemodialysis have also been visualized by considering peristaltic flows with heat transfer.
Peristaltic flow with heat transfer has many applications in biomedical sciences and industry such as conduction in tissues,
heat convection due to blood flow from the pores of tissues, radiation between environment and its surface, food processing
and vasodilation. Furthermore, it used to generate metabolic heat and heat transfer due to some external interactions such
as, mobile phones and radioactive treatments. Also, convection is seen in the ocean currents, sea-wind formation, rising of
plume of hot air from fire, formation of micro-structres during the cooling of molten metals, solar ponds and in fluid flows
around heat dissipation fins. The application radio-frequency therapy is important to treat more diseases such as tissue
coagulation, the primary liver cancer, the lung cancer and the reflux of stomach acid [13]. Many investigators have reported
the influence of heat transfer on peristaltic flow of Newtonian and non-Newtonian fluids. Nadeem and Akbar [14] studied the
influence of heat transfer on a peristaltic transport of Herschel-Bulkley fluid in a non uniform inclined tube.

In the last decades, the study of nanofluid is an important area which has attracted the attention of many investigators.
Fluids with nano-scaled particles interaction are called as nanofluid. Nanofluids refer to heat transfer liquids with enhanced
heat transfer capability. Nanofluid is defined as the study of fluid flow in and around nono-sized objects. Furthermore, it is a
new class of fluids designed by dispersing nanometer-sized materials, such as nanoparticles, nanofibers, nanotubes,
nanowires, nanorods, nanosheet and droplets, in base fluids. The nonoparticles used in nanofluid are normally composed of
metals, oxides, carbides or carbon nanotubes. Water, ethylene glycol and engine oil are common examples of base fluids.
The first investigation of the nanofluid was introduced by Choi [15] . Choi [15] reported that an innovative technique to
improve heat transfer is done by using nano-scale particles in the base fluid. Further, Choi et al. [16] showed that the
addition of a small amount of nanoparticles to conventional heat transfer liquids increased the thermal conductivity of the
fluid up to approximately two times. Nanofluids have major applications in heat transfer, including microelectronics, fuel
cells, pharmaceutical processes, hybrid-powered engines, domestic refrigerator, chiller, nuclear reactor coolant, grinding and
space technology. Also, there are another activities of nanofluids, such as boiler flue gas temperature reduction, biological
organisms, snapping shrimps, super-hydrophobic beetle wings and use of charged polymers for lubrication. In addition, the
lotus effect for self-cleaning surfaces, membranes for filtering on size or charge (e.g. for desalination), nanoporous materials
for size exclusion chromatography, passive selective transport in aquaporins, active transport in ion channels, molecular
motors like kinesis and charge based filtration in the kidney basal membrane are considered the important applications of
nanofluids [17].

In the cancer treatment, magnetic nanoparticles are injected into the blood vessel nearest to the cancer’s tissues. The
dynamic of these nanoparticles occurs under the action of the peristaltic waves generated on the flexible walls of the blood
vessel. Studying such nanofluid flow under this action is, therefore, useful in treating tissues of the cancer. Mekheimer and
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Abd elmaboud [18] found that the tissues of cancer are destroyed if the temperature reaches 42 —45° C. On the other hand,
in this application the drug may be placed on the magnetic nanoparticles and is injected near the tumor. Then, the drug is
absorbed by the tumor through a high gradient magnetic field, which is concentrated near the tumor center [19]. Therefore,
the interaction of nanoparticles in peristaltic flows has now been receiving attentions of many researchers. Akram et al. [20]
investigated the influence of peristaltic transport on Jeffrey nonofluid in an asymmetric channel. Also, Ebid and Aly [21]
studied the peristaltic nanofluids flow in a channel with flexible walls and slip condition. This study was considered as an
application to the cancer treatment. Furthermore, many investigators studied the interaction between nanoparticles and
mild stenosis. Ellahi et al. [22] investigated the blood flow of nanofluid with stenosis and permeable walls. Also, the problem
of blood flow in the nano-Prandtl fluid of tapered stenosed arteries has been discussed by Nadeem et al.[23].

The effect of vessel tapering is an important factor in studying peristaltic transport. Pandey and Chaube [24] studied the
axi-symmetric peristaltic transport of a viscous incompressible viscoelastic fluid through a circular tube whose cross section
changes along the length (tapered tube). The Newtonian and non-Newtonian blood flow through tapered arteries with a
stenosis have been investigated. Mandal [25] studied the notable characteristics of the non-Newtonian blood flow (Power-
law model) through a flexible tapered arteries in the presence of stenosis subject to the pulsatile pressure gradient. Also,
Akbar et al. [26] discussed the theoretical study of nanofluid flow through composite stenosed arteries. In studying the
peristaltic flow, many researches assumed that the fluid layer next to the surface moves with it, which is so called no slip
condition. However, there are another works that considered hypotheses including slippage. The so called slip conditions
means that there is a relative motion between the fluid layer next to the fluid surface. It states that the velocity of the fluid at
the plate is linearly proportional to the shear stress at this plate [27]. It is very important in the polishing of artificial heart
valves. Also, it is important for internal cavities in a variety of manufactured parts, micro-channels or nano-channels. The slip
condition plays a vital role in shear skin spurt and hysteresis effects. Furthermore, the fluids that exhibit boundary slip have
essential technological applications when a thin film of light oil is attached to the moving plates. Also, it is used when the
surface is coated with a special coating such as a thick monolayer. The problem of effects of magnetic field and wall slip
conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel was discussed by Ebaid [28]. Also,
Abbasi et al. [29] investigated peristaltic transport of copper-water nanofluid in an inclined channel in the presence of
velocity and thermal slip conditions.

From the motivation of above discussion, the aim of the present study aims to investigate the effect of heat transfer on
peristaltic flow of Jeffrey nanofluid in a vertical annulus. The flow is streaming through a tapered artery with mild stenosis.
Furthermore, the influences of slip conditions of velocity, heat and nanoparticles are also considered. The governing
equations of motion, energy and nanoparticle volume fraction are based on a perturbation technique. This technique
depends on two parameters. Firstly, the amplitude ratio. Secondly, the small wave number. These equations are analytically
solved in accordance with the appropriate boundary conditions. The pressure rise and friction force are obtained in terms of
dimensionless flow rate () by using numerical integration. Numerical calculations are adopted to obtain the effects of

several parameters, such as the Reynolds number, the slip parameters, Brownian motion parameter, thermophoresis
parameter, the taper angle, nanoparticles Rayleigh number, thermal Rayleigh number, the ratio of relaxation to retardation
times and the maximum height of stenosis. As a special case of this study, when the previous parameters tend to zero, the
results reduce to the same as that found by Fung and Yih [30]. To clarify the problem at hand, in section 2, the physical
description of the problem including the basic equations governing the motion with the appropriate boundary conditions are
presented. Section 3 is devoted to introduce the method of solution according to a perturbation technique. Through section
4, we introduce some important results that are displayed graphically for pumping characteristics and trapping phenomena.
Finally, in section 5, we give concluding remarks based on the obtained results for peristaltic transport and stream lines.

2 FORMULATION OF THE PROBLEM

Consider an unsteady Jeffrey fluid through vertical annulus. The outer tube is tapered and has a sinusoidal wave traveling
down its wall with mild stenosis. The inner one is rigid, uniform, and moving with a uniform velocity ¥}, . The cylindrical polar

co-ordinates system (r, @, z ) are used, so that the Z -axis lies along the centerline of the inner and outer tubes. Through
this study, we consider the case of an axial symmetry. In other word, non of any physical quantities depend on the
coordinates . The gravitational acceleration g is also taken into account. The inner and outer tubes are located at » =r,

and r = R(z)+ hy, respectively. They are maintained at the uniform temperatures 7;, and T, respectively. Also, they are

maintained at the uniform nanoparticles concentration C, and C,, respectively. The slip conditions are also considered.
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The effective radius of the outer tube R(z) [11] is taken as follows:

R —m(z+1L) L<z<-z,
H
R(z)=<R, —m(z+L)—?[1+cos£] -zy <2<z, (1)
20
R —m(z+L) zy <z<d,

where R(z) is the effective radius of the tapered artery, R, is the radius of the un-tapered outer tube, H =/hcos¢ is the

hight of the stenosis in the tapered artery, ¢ is the angle of tapering, / is the maximum hight of the stenosis, z, is the half-

length of the stenosis and m = tan ¢ is the slope of the tapered vessel. Sketch of the problem is given in the figure 1.

The ratio between the height of the stenosis and the radius of the normal artery is much less than unity. The arterial is
taken to be of finite length L +d [10]. This study focus on all possibilities of different shapes of the artery viz, the converging

tapering ¢ <0, non-tapered artery ¢ =0 and the diverging tapering ¢ > 0 [25].
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Fig. 1. Sketch of the physical situation of the problem

The prototype of fluid designed by Jeffrey is considered. Therefore, the constitutive equation is then become [1]

MU
= A A
S=iis Ut hd) @

where S is the stress deviator, u is dynamic viscosity, 4, is the ratio of the relaxation time to retardation one, 4, is the

retardation time,
A=L+1", (3)

is the rate of strain tensor, (dot) denotes the differentiation with respect to time, V =(u,0,w) is the velocity field and

L=VV.

Since we assume that the base fluid density p, is uniform, it follows that the incompressibility condition is then become

VvV =0. (4)
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The equation of motion may be written as
oV
Aot UV |=-Vp+VS+pg, (5)

where p is the pressure and g =(0,0,g).

The density for the nanofluids is [31]
p=Cp, +(1=C)p;(1-B,(T~Ty)), (6)
where C is the nanoparticle volume fraction of the nanofluid, p, is the density of the nanoparticles, p,, is the density
of the fluid, B, is the volumetric expansion coefficient of the nanofluid and 7' is the temperature.

The equation of energy [20] is given by

(pc)f(aé—]; + K.VTJ = KVT + (pc)p[DBVC.VT + %VT.VT} (7)

0

where T is the temperature, k =

) is the thermometric conductivity, K is the thermal conductivity, cpis the
PC) r '

specific heat of the base fluid, c,is the specific heat of the nanoparticles, Dy is the Brownian diffusion coefficient and D

is the thermophoretic diffusion coefficient.

The equation of nanoparticle volume fraction in the nanofluid [20] is given by

€ yve=pvic+Lrver, (8)
The geometry of the peristaltic wall surface is defined as [6]
h1=acosz—” z—ﬁ , (9)

. . . kt
where a is the wave amplitude, A is the wave length and — is the wave speed.
1

The appropriate boundary conditions may be listed as follows [[21] and [30]]:

=%, w=-)5,, T+776—T:T1, C+[i’a—C=C1 at r =R(z)+h, (10)
ot or or
u=0, w=Vv,, T=1,, C=C, at r=n, (11)

where ¥ is the velocity slip parameter, 77 is the thermal slip parameter and [ is the slip parameter of nanoparticle
volume fraction.

Combining Egs. (2), (3) and (6), the 7 and z -components of the Eqg. of motion (5) may be written as follows:

V' -component:

Ou ou ou.  p  2u lou *u 10w 10*w
prltu—+w—_—)=——+ [ +—+ >+
ot or 0z or 1+A ror or~ 20z 20r0z

u 1 0%u o’u 1 &%u 1 3w 1 ou 1@ @

—+ A4, (- + +— +— +
P2 P roror orfor 20220t 20r0z0t rt ot r ort or’

ou 1 &w u du ut w o o’u 1 &%u
stoUu—S -t —5+— tWw_—S —t+t-w—
Ooroz 2 Or°0z r-or r r oroz or-oz 2 oz

1
+—u
2
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1 &w wou oudu owodu 10u d*u 10ud*w
W — ot ——— o+ — +—— t———
2 oz*or r* oz Oror* Or ordz 20z Ordz 2 0z or?

lowd*u 106w d*w
t-— 5t (12)
2 0z oz 2 0z Oroz

Z -component:

ow  ow ow, Op u d1ou 1ow 0u 0*w
pr—Fu—+w—)=——"+ ——t——t—t—
T ot or Oz 0z 144 roz ror oOzor or

0w 10°U 1*w ou o*w Pw  u u
22—+ A4 +— + t——S—+2—5+—
Oz ¥ 0zO0t r Orot 0zOrot oOr ot 0z°0t r Oroz

u d*w ou o*w Fw wotu wotw ou

—— tu—5 —tu— +2u st———+— w—;

r or or-0z or oroz r oz r Oroz 0z Or
o*w Pw ou 0*u udtw owdu owdw

+2w

+w— T+ — t———t——t—
Oor-oz Oz Or Oroz Or or or 0Oz Or Oroz

ou &*w ow 0*w

+2— +2——)]+C +(1-C 1-B,(T-T,)lg, 13
0z Oroz 0z oz* N+ Cp,g )Pyl i 0)lg (13)
the continuity equation
Lo  ow_o o
r or Oz

and the Eq. of energy (7) may be written as follows:

or or or oroC 0T oC\ D,( 0T, ,oT.,
—tUu—+w—=7|Dp| ——+—— |+ — | () + (=)
ot or 0Oz Oor or 0z Oz T, \ or 0Oz

2 2
+K(8T+18—T+6T], (15)

or? ; or 62_2

(pc)
where 7 = Py is the ratio between the effective heat capacity of the nanoparticles material and the effective heat
(pc)f
capacity of the base fluid.

Finally, the equation of nanoparticle volume fraction in the nanofluid (8) may be written as follows:

oc oCc oCc __(8°C l1eC o’C) D,(oT 10T o°T
—tu—+w—=Dpl At |t | 5ttt | (16)
ot or 0z or: ror oz Iy\or" ror oz
The instantaneous volume flow rate is defined as:
0= 27rJ.r2wrdr, (17)
i

where R, is a function of zand t.

A AR
The time averaged Q (time mean flow) over period 7 = 71 is defined as
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A~ 1ot
Qz;jOQdT.

(18)
In this analysis, we consider the stream function ¥ =/ (r, z,¢) which may be expressed as
0 10
-~V and w=-—-2¥ (19)
r Oz ror

Combining Egs. (10-16), one gets:

r-component:

10y 1oy 1oy 10 1oydy|_ o, 2u 1
Pl o roz: 2 0 roree P2 or 02 ) or 144 2 ordz

163 +ia3¢/”_1 % s oy 1 0% 10y, 4 oy

+— e
2r or*oz  2r 0z° o 2r? orozot  2r or*ozot 2r 0z°0t r 0z rt Oz

662 283l//+i84 1o 1 &y loy, 3 oy

r oroz  r* or*ez  2r 6r362 2r v 22 82 r or - 217 o%0r

1 o'y 1 &%y 2 0w 5 2, 3 0w w2 'y o'y
Y P S R S ( ) 3

2r or<oz” 2r 0z r’ oz 2r° Oroz

2r2 oroz or*oz v ort oz°
_i@zy/ R4 1 o*w &y 1 vy 1wy 1 1) (20)
2 ort oz*or 21t 827 ofor 2t oz o’ 2r oroz oz° 2r3 Oz* ’

z-component:

181// loy loy 10 10y dyw)\_ dp u
Pyl = S o)ttt
r 6r8t r Oz r- or r or r° or Ozor

(L
oz 1+, 1 or

Oy 1 oy 1oy
r2 or*ot r oz'0rot  r or’ot
Loy 2 v 1 d'w 60y 60w 30

J— +_ —_— R
r oz r oz’ r6r2822 rtor P oor? 2

1 o° 10° 1 &° 1 o° 1
D e A o
r° or r or ¥ O0z°Or r’ Orot

y 10%. 1oy 13y
rrorr rort ror  r’ oz

2 0w 10w 1 o'y 1 ’w 0w 3 0w dw 1 0w oy
t oA T s AT vt i T
¥°Oor°0z roroz” roroz r’ Oroz Oz r° Oroz 0z°Oor r’ Or” Ozor
3 2 2 3 2 3 2 3
_%81/3/61//_%81/2/81131_%81{821// 181// al//])+Cpg+(1 0)
¥~ Or’ 0zO0r r° Or° Oz r 0z* or*oz 1t ort or? P
< p,[1-B,(T ~T))lg.

(21)
Eqg. of energy may be written as follows:
[ P LY
ot rozor roroez or or 0z Oz T, \_ or 0z
o'T 16T 0°T
+ K —+ — + — | (22)
or r or oz
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Also, Eq. of nanoparticle volume fraction in the nanofluid may be written as follows:

oC 1oy oC 10yaoC _ o°C 10C o°C\ D,(0T 10T 0T
- — =Dy S+ ——+— |[+L| S +——+— |
ot r 0z Or r Or Oz or" ror Oz I,\or" ror oz

(23)

and the boundary conditions (10) and (11) take the following forms:

oy oy _2mkr . 2rm k oT oC

W ops,, L= Ll T+p=T1, C+BS=C, at r,=R(z)+h, (24

o P % T TR sz(z 1) Tor Po = Cat n=R@+h, 24
1

a—l//=0, ——6—W=V0, I'=T7, and C=C, at r=n. (25)

oz r or

It is convenient to write the forgoing equations in an appropriate dimensionless form. This can be done in a number of

ways depending primarily on the choice of the characteristic length, time, and mass. Consider the following dimensionless
R2

forms depending on the characteristic length R,, the characteristic time 71 and the characteristic mass M . The other

dimensionless quantities are given by

p=l p=E MR S WR s R
R R k k 1 2

—_— 2 —_— —_— —_— —_—

- I S B BN TR o
pk R, R, R, R, R,

—_— —_— 2 —_— R —_— —_ —_—

v=-", p=pR‘, o-1L T°, o=S"% ang 0= 0 _ (26)
kR Pk T,-T, C -G, 27R k

On using the above dimensionless quantities in the forgoing equations of motion, these quantities will be arised in a
3
RI(C -Cyglp, —py)
2
prk

dimensionless forms including the following dimensionless parameters: R, = is the nanoparticles

R (1-C)B,(T, - Ty)g

Rayleigh number or the nanoparticles Grashof number, R, = is the thermal Rayleigh number or

,uk2
the local temperature Grashof number, R,, = ng(ppc(;:lg _ CO)pf) is basic density Rayleigh number, & = a/R, is the
S
amplitude ratio, o = 2”Rl is the wave number, N, = %_CO) is the Brownian motion parameter,
N, = w is the thermophoresis parameter, A, = % is the Weissenberg number, R, = p;k is the Reynolds
0 1

* . . . . . * . . .
number, y = Viad is Kudsen number or non-dimensional velocity slip parameter, . = A is the non-dimensional thermal
1 1
slip parameter, 5 = -— is the non-dimensional slip parameter of nanoparticle volume fraction and V;, =
1

mark refer to the dimensionless quantities. From now on, these will be omitted for simplicity.

V.R
"1 The bars
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The dimensionless effective radius of the tube R(z) becomes:

R —m(z+1L) L<z<-z,
R(z)= Rl—m(z+L)—%[l+cosE] —7,<7<7,, (27)
2y
R —m(z+L) z,<z<d,

The dimensionless governing equations (20)-(25) may be rewritten as:

r-component:

10y 1oy 1oy 10y, loydy o 1 10y

ro0z0t r 0z r’ 0z rordz r> Or 0z’ or R,(1+4) r’ oroz

1 o’y 10w A [_L oy L o'y s o'y +181//(_i8_1//

t———t— 2 3 4

r or‘éz r oz’ ¥ 0r0zO0t v Or°0zOt r 0z’0t r Oz r* Oz

12 Py 4y 13w 13y 1 0w 10y 3 Oy
3 T i s aA v oot 3 2 A 37 A 2A

r® 0rdz r* or’dz r Oor‘doz r oroz r° oz r or 2 0z%0r

4 4 2 2 3

+1821//2+16;// i3 )_5 8y/)+iz8;y 62 +i38y;8y/

¥ Or-0z r 0z* r oroz r? 0roz or*oz r® or® 0z°

20w oy 1oy 6;// _L@l//83 1 0w oy (8 LA 28)

2 or? 0z*or  r? 0z oz*or r? 0z or®  2r? Oroz oz° oz 7

z-component:

10y Moy Moy 10y, loypydy op, 1 13y
rorot r 0z r* or r or’ r> Or 0zor oz R,(1+4) r’ or

10 10y 1 0y A 181//+L831//_l vy 13y
rort r or razzar P oerot r?orlet rozerot r oriot

Loy 2 Py 1 3w 6oy 60w 30y 10w, 1oy 13y
4

r oz r* oz’ ;8r2822 ror ot rror rort ror  r oz

20y 138y 13y 120y dy 30y oy 13y dy
+ 2 2 3 3 + 3 2 + 2 2 + 3 2
r°or‘dz r oroz r or’oz ¥’ Oroz Oz r° 0roz 0z°or r> Or~ OzoOr

1wy 10wody 20w vy 10w oy
-— -— -— +— +R,0—-RO+R,. 29
P2 ot ozor r? ort 820 vt 8zt or*oz P or? arzéz]) N ‘ M 29

Eq. of energy becomes:

oo +L81// o0l _l&l// 06 — N (849 oo N 0o ao_jJFNz((%)z +(%)2j
ot r 0z Or r Or Oz or oOr 0z Oz r 0

0’0 106 8249
(30)

y r or 62
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and the Eq. of nanoparticle volume fraction in the nanofluid becomes:

7(C,-C) (00 10w oo 10y doc) 0c 10c 0c N (0’0 106 0°0
—L = L ———+—— | (31)
N, ot rozor rordoz) o ror Oz N, \or" ror oz
The instantaneous volume flow rate becomes:
0= Irzwrdr. (32)
1
The dimensionless boundary conditions are then become:
* 2 2 3 2 3 2
oy _ y 81/2/+181//_8y2/+A2[82y/ +181//_ 621// +61//(_L281/2/
or 1+A4 0z ror or 0z 0t rordt oOrot 0z r Oz
3 2 3 3 2 3
Ay 20v, 20y 10y, v 1Ty 1Ty 10y,
roroz- r> or r°or r or or r oz r-oroz r or
a—l’[/=0us7fsinoc(z—t), 0+n*%=1, G+ﬁ*a—0=l at r,=R(z)+h, (33)
z or or
W_o, 1V g0 and o=0 at r=r, (34)
0z r or
and
h, =¢gcosa(z—t). (35)

Now, the system of Egs. (28)-(34) are nonlinear partial differential equations. There is no analytic method to solve them.
Therefore, we are forced to consider an approximate solution by using a perturbation technique. This technique is
considered in the following section.

3 AN APPROXIMATION SOLUTION

The perturbation technique depends mainly on considering the small parameter as amplitude ratio & . To solve the
nonlinear system of Egs. (28)-(32) under the appropriate boundary conditions as given by Eq. (33) and (34), we shall assume
that any physical quantity, suchas ¥, p, 0, o, Q, the pressure rise Ap and the friction force AF' may be represented
as:

E=& +&b +.... , (36)

where fo is the undisturbed quantity and §1 is the first perturbed quantity.

Substituting from Eq. (36) into the system of Eqgs. (28)-(34) to collect the terms of like powers of & . This procedure yields
zero and first order systems of partial differential equations according to the corresponding boundary conditions. Through
the following subsections, we shall consider these orders:

3.1 THE ZERO-ORDER SYSTEM

Assuming that the radial velocity u is very small in comparison with the axial one w. Also, the variation in the Z -

ow w
direction is smaller than that in the radial one. Therefore, we may assume that ¥ <<w and — <<a—. Also, it follows
z r
ou 0*u 0u
that the terms —,—-,—-
or or° oz
only. This case is defined as the initial state (no peristaltic wave). The zero order equations result from the system of Egs.
(28)-(32) may be written as:

may be ignored [11]. Furthermore, the functions v, 490 and 0, may be depended on ¥
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V' -component:

Py _
or

which means that p, = p,(z) only.

0, (37)

Z -component:

dp, _ 1 (1 0 2, 0 9 1 6WO)]J+RN0-0 ~RO,+R,,, (38)
dz R,(1+A)\ror or r or
ror 6r or or or
and
15(5%] N 1o aej
- 0. (40)
ror\_ or N ror or

The dimensionless volume flow rate become:
R(z)
0, = w,rdr, (41)

gt

After using Taylor expansion, the boundary conditions (33) and (34) can be written as

* 2

Wo_ v 1o a"”0) Yoo, gin %=1, 64501 @ r=RG). @)
or 1+A r or Oz or or

8—l//ZO, —l%ZVJ, 6,=0 and o0,=0 at r=rn. (43)
0z, r or

The solutions of Eqgs. (38)-(41), in accordance with the boundary conditions (42) and (43), in the case of free pumping or
the fluid is stationary, are:

I 21 C) I 10 B
0y(r,z2) A Y + £3(2), (44)

hence, the solution of nanoparticle volume fraction in the nanofluid may be written as

N @) Ve

o,(r,z)= Nbfl(Z) + f,(2)Inr+ f,(2), (45)
y/o(r,z)z—ﬂ/‘Nbfi(z)—(ﬂGO(Z)+4f6(Z)_5f8(Z)j fg( ) A
4-N, f,(2) 16 16
+[(f11(2)—2fg(2))Go(z)+fu(Z) - 2fl4(z)j BDGE o2 oy, )

where, G,(z) is the zero order pressure gradient. Also, the boundary conditions lead to the following implicit

transcendental equation in f,(z):
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(R(z) " — "R

_ ﬂ*R(Z)befl(z)fl

N, N, fi(2) WRO) e 5@ -
e | Mo, O — Ry R ey T | PO G )
The relation between the pressure gradient and the time mean flow may be written as:
16
Go(Z) = 4 4 2 2 2 2
f5(R(2)" =17)+8/11(R(2)" InR(z) -1y Inn) + (2 /15 = /;1)(R(2)” —1")
A1

<[0-- (41, =3 /)RE) - - L

(R I RG) = )= (R )

x(2R(2)* In R(2) = 21" In7; = R(2)* + 1) = f,(R(z) = 1)], (48)

where, f;(z), i=2,6,...,14 are given in the appendix.

The pressure rise Ap,, the friction force of inner and outer tubes ( AFOI and AF02 ), in the tube of length L, in their non

-dimensional forms, are given by

d
Ap, = LGO(z)dz

. -2 20 d
—j Go(z)dz+j G,(z)dz + j G,(2)dz, (49)
—L —Z 2y

AR = [ 12 (-Gy(2))dz

= [ (-Gy(2Ndz + [ 7 (Gy 2Nz + [ 1 (=Gy (), 50

AF? = fLR(z)z(—GO(z))dz

= [["RGY (Gy @)z + [ R (G 2dz+ | ‘;R(z)z(—Go (2))d=. 51)

Because of the complexity in evaluating the forgoing integrations, the value of them are computed numerically.

The analytical solutions for the temperature distribution &, and the nanoparticle volume fraction in the nanofluid o,
are obtained and expressed in terms of f,(z), f,(z), f3(z) and f,(z).As f,(z), f;(z) and f,(z) depend on the
evaluating of fl(z) , it is noticed from Eq. (35) that fl(z) is governed by a nonlinear implicit transcendental equation. If this
equation is solved for f(z), the analytical expression for §, and o, are established. However, it should be observed that
obtaining the value of fl(z) analytically from Eq. (47) in terms of other parameters is very difficult. Therefore, Mathematica
software is used to evaluate the numerical solution for this equation. The values for fl(z) at some cases are presented in

tables 1 and 2. These values for f,(z) play an important role to get several plots.
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Table 1. The numerical values of f,(z) at different values of N, and N, for  =0.2, L=1, $=0.05,d =2,

t

y =n =8 =01, 2y =08 and z=0.4.

N, N, fi
0.8 1 1.3478
2 1.62155
3 1.81516
0.9 1 1.23462
2 1.47487
3 1.64553
1.0 1 1.14547
2 1.35861
3 1.51076

Table 2. The numerical values of f,(z) at different values of 77*, IB* and ¢ forr, =02, L=1, N, =2, N,=08,d=2,
7/* =0.1, z,=0.8 and z=0.4.

n I ¢ A
0.1 0.05 1.62914
1 1.55115
2 1.46928
0.1 0 0.05 1.67075
0.4 1.51297
0.6 1.46191
0.1 0.1 0.05 1.62155
0 1.56611
—-0.05 1.52212

As a special case of our work, when the maximum height of stenosis, the taper angle, the slip parameters, Brownian
motion parameter, thermophoresis parameter, nanoparticles Rayleigh number, thermal Rayleigh number and the ratio of
relaxation to retardation times tend to zero in Egs. (29)

(ie B0V =m=h=k=A=Ry=R,=Ry=y =0 =f =¢=N,=N,=f;=f,=fs =y =f.= /s =0,

R, d R, 4, ¢
fs =R, and f;=——= (ﬂ) ), we obtain the form (7,z) =?e(%)(r2 —%) which is in agreement with the
/4
previous work of Fung [30].

4 dz
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3.2  THE FIRST-ORDER SYSTEM
The first order equations that results from the system of Eqgs. (28)-(32) may be written as: r-componen
2 2 3 3
10 V/l_LaW06V’1:_8p1+ 1 (—— 1 o'y, 1 0y, _’_lal//l
r 0zot r’ or 0z’ or  R,(1+4,) r>oroz ror’oz r oz’

1 Oy, +l 'y, +164W1 1oy, 3 Oy, +l 'y,
r? Orozot  r or*ozot roz’ot r or r* oz*0r  r or*oz?

[_

Loty 4 82%) 4 Oy, By, 23y, Oy, 13, 63!/10
r ozt r 0z* r3 ort oz°  r* or* oz'or r2 0z*

z-component:

)

_lazl/ll 10y, 1 81//0 _lazl//o +ia‘//0 3y, :_%+ 1 (_iﬁl//l
r orot r Oz or r or’’ r’ or 0zor oz R(+4) r or
1 0’w, 10%, 1y, 1%, 1 0% 1 oy 103,
2ot ot rol Aol=— t o0 2 T A3

or- r or rozor P oot 1P ar’ot roz’ordt r oriot
18‘//1(661//0 68‘//0_'_3 'y, 16‘//o lal//o(_iaw/]_'_i 3y,

roz rtor ot rror rort r or rr oz rtorioz

1 X2 1 3"y, +L62‘//0 Oy, _L63W0 Oy, _iazl//o 'y,
roroz>  roroz ¥ or* ozor r* o ozor r* or' oz’

1 &y, O,
+— +R.0,—RG,.
r* or? 8r282]) N e

Eqg. of energy becomes:

00,  10y,80, 10y,960, _ [ael o0, , 96, 801)+2N 39, 06,

ot r 0z Oor r Or Oz or or or or "or or
0’0, 106, %6,
+——14 ,
or* ror oz
and the Eq. of nanoparticle volume fraction in the nanofluid becomes:
(C,-C,)( 0o, +l dy, 0o, 10y, 0o, ) _ o’o, +laal N o’o,
N, ot r 0z Or r Or Oz or’ ror oz

N, 82491 106, 6291
L=+ +—=L|
or r or Oz

After using Taylor expansion the boundary conditions can be written as

* 2 3
al//l+cosoz( —t 61/?_ 4 (8 l/§1+18l//‘ aWl+coso¢(z t)(lal/;‘—al/;‘)
or or 1+4, oz r or or r or or
+A2[83W1 +lazl//1 _ 3y, 8!//1( 2 dy, L= 2 & v, 1 aSV/o Oy, 1 63‘//1

0z*0t  r orot 8r25‘t 0z r3 or ot ror or r 0z°

(52)

(53)

(54)

(55)
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2 3
L0 10V Y ariysinalz—1)
Z

6, +n*%+cosa(z —t)(H0 +n %) =0, o, +ﬂ*%+ cosa(z—z‘)(O'0 +5 day )=0
or or or r
at r,=R(z), (56)
Wi_o, Wiy =0 and o =0 at r=r. (57)
0z or

The solutions for ¥/, 491 and O; may be considered along the normal mode analysis [30]. Therefore, the various
physical quantities may be represented as:

= A4 (r)explia(z —t)]+c.c.,
6, =J,(r)explia(z—t)]+c.c.,
o, = B,(r)explia(z—-t)]+c.c., (58)

where the c.c. denotes to the complex conjugate of the preceding term.

Substituting from (58) in (52)-(57), we get the following system of ordinary differential equations:

2 2 ]
2 2f11 NN~y A 200 44 e dd,
r r dr ro o dr

+(<f5 f“h“' f”)G o= S+ fr 0 for lnr+f fMj

r
s dPA iadA 1 20% d4, 2a’dA,  1d*4,

X| -l A +ia— —— = > - +——
dr rdr ) RA+A4) r dr v dr r dr

3d4 3d*4 2
IR R R

s 21a RELNCE 2ia® dia d’A ia d*4,
rtdr  r dr

d*A
+A L4 - -
ar’ L P ) dr ( r P drt rodrt

o “A(&—fw KNS =N f 4Nbﬁ+4>rN”“+4—’§+%]
r

r
Liad’4 1(( 3f5 3f,11nr+f”+8f]3)G 12(f6 )

rdr e
_f77’_Nbf]_2(12+17Nbf]—6N§](12+2N2f13)—£(121nr+1) 3f121nr—:3f14+1)

3
+£(f5: + frinr+ f,r)G, + (f, —fg)r3 +f7r_Nbf‘+3 +f8r3 lnr+f12rlnr+fl4rJ

i’ ia’ dia’ d4, 6ia 2ia’ d’A diad’A iad'A
X(_ o)A tr ) T 3 T2 4
r r’dr r r dr rodr v odr

3fs

(=

+ f,(nr+1)+ )G, +3(f, — f)r2 + £, =N, f)r 7 4 £ (Inr+1)
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.3 . 3 . 2 . 3
+f8r2(31nr+l)+f14)(—la3 4+ 20 dA, Siad’4, _2iad Alj])
r

2 2
r- dr P dr rdr

_R di R di (59)
dr dr’

2 .
iaJl(—1+(f5; + fonr+ £)G, +(f, = fr+ fr " 4 ft e+ fyInr+ £))

+iaf,dr " —dJ (N for N —Nbfl”)%—oml
dr? r dr
+ Nbfzr_Nbf‘_l ﬁ (60)
dr
iar(C,—C, -Nf - r?
Qo) (g Ly i Lt flnrs £)Gy+ (= £
b b

ANy oo _d dB. N,
+ + furtInr+ £, Inr+ f,,)) = —(r—= —(r=
far Sy e fplnr+ fi)) =—-r—2)+ N, (dr( )

Nt

15 (61)
b

with the appropriate boundary conditions:

dA 3f.R? 3 o
! ( fﬁ + [,(0+InR) + f)—=(f, — f,)R —ﬁ(3—Nbfl)R2 Mo/t
dr 2 2
* 2
—£R2(1+2lnR)—&(1+lnR)—&=7/—(—a2A1+l%—d—fl
2 2 2 1+ 4 R dr dr

. 2
+£R(—4+31nR)————Q+AZ[—ﬂﬁﬂ'ad A | iad (@
2 2 R 2R R dr dr

+G0(%—%)+2(f6 — £+ [,Q2=3N, [, + N2 fHR™ + f.(3+21nR))

3-Np,

G+

+?llnR—fl3R)+(f6—fg)R3 + LR 4 R InR 18pt

ia dA i_adzAl_ia3
R dr* R

R
+fuInR+ f,r )( A)]), 18pt4, :_57

*dB f

B+p — (ﬂ (r —%(Nbfl +1)f2R_Nbf1‘2)_,_%fZR—Nbfl—l _%),
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*% - sziNbfr1 (U*(Nbfl +1)

J, +
177dr 2 R

-1) at r=R(z), (62)

AIZ%ZJIZBIZO at r=r,. (63)
r

Eqgs. (59)-(61) represents a system of nonlinear partial differential equations. Therefore, it is impossible to find their
solutions in a closed form for arbitrary values of the given parameters. Even for non-Newtonian fluids [6], the required
solutions are given by a perturbation technique. Following Jaffrin [32], the long wavelength approximation is considered. This

requires that the wave number « is small. Therefore, the flow quantities, such as A4,(r), J,(r) and B,(r), may be
expanded in a power series of the small parameter & as follows:

(M= xom) oy, (r)+...... (64)

Substituting from Eq. (64) into Egs. (59)-(61) and collecting the terms of like powers of & . Another zero and first order
according to the parameter @ are considered. These orders may be solved analytically in the following subsections.

3.2.1 THE ZERO-ORDER SYSTEM OF X

The zero-order equations that results from (59)-(61) can be written as

d 1d d 1d dB dJ
— () r—(—— =R (1+4) Ry —%-R,—*|, 65
- C dr)( r o )) 10 = R.( ﬂq)( v R drj (65)
d’J,, ( N, fi-1 Nf+lj -N, -1 dB
+| N P17 801 +N, b 10 = ) 66
dr’ S r dr oo dr (°°)
d , dB, d  dJ, ]
| &y | =o, 67
dr( ) b(dr - dr ) 7

with the appropriate boundary conditions:

dd, [3 f.R?
2

_é _ 2_& _ 2-N, f;
o 1 +f11(1+1nR)+f13j 2(f6 SR 2(3 N, /)R

* 2
_AR2(1+21HR)—&(1+InR)—&= 4 (idAlo _d 1‘210
2 2 2 1+4 R dr adr

(38
2\ 4

a3 S Ny,
R R Rj+2(f6 fg)R+ 3- 4Nf1+Nfl)R

+§R(—4+3lnR)—&ln—R—& A,=-
2 2 R

«dB, 1 _« f, N, N fi-2 N, NS
BIO ﬂ 10_§(ﬁ (R_lz b(Nf1+1)f2 i j+be2R . _El]a

-N, f;— *
g P - LR (N 1)
10777

dr 2 R

—1} at r=R(z), (68)
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dA,,
dr

The solutions of zero-order system of & take the following forms:

AR PN

A, =J,,=B,=0 at r=n. (69)

= fis(@)+ fiy (2 712) (70)
- ) — f1(2) /1, (2)N, “Nphi _ £:(2)fis(Z)N, ~Nphi z
f15(2) —N,,fl r —N,,fl(Z) r Inr+ f5(z)Inr, (71)
Ay = [ (Z)”LNbfl + fze(z)’”4 +f28(Z)7”2 + ](29(2)7”4 Inr "‘fso(z)’”“il\,bf1 Inr
f23( ?) rPInr+ £,,(z)Inr + £,4(2), (72)

where the constants f,(z) ,i=15,16,....,30, are given in the appendix.

3.2.2 THE FIRST-ORDER SYSTEM OF X

The first-order equations that results from (59)-(61) can be written in the following ordinary differential equations

2 .
zAlo(zf”G NN, -2 ‘+4ﬂ+2§2)‘id‘f°+%“w
r r dr r° o dr
+((ﬂ+m+&)c;o+(f6—fg)r+ﬁrfiNb” +fgr1nr+ﬂ+&J
4 r r r r
y l.dzAm_i’dAw _ 1 1d'4, 3 d4, +id2AH _2d°4,
dr’* r dr R(+A) r dr* vt dr » &’ v dr

+A [ﬂdA ﬁdzAlo _£d4A10 2‘13‘410 i 4, (( 3f5 3f111n’"+f11+8f13)G
r

rodr P dr? rodrt rrodr

12(f, - -Nyfy-
_ (f;_z Jo) _ o 2(12+17Nbf1—6szf12+2N§ﬁ3)—}{—§(121nr+1)

L 3fulnr+3f, +1)+ 6id’4, 4id'A, +id4Am
r rtdr? Podr rodrt

7Nbf1+3

3
x((fj + fyrinr+ fur)Go+(fo = f)r' + for +fs’”31n”+f12’”ln’”+ﬁ4r]

it B NN N a7 s A B

7

3f5

7Nbf1+2

+(( + fu(Inr+ 1)+ £1,)G, +3(f; = f)r’ + f,3=N, f)r + fi(Inr+1)
3i d*A 21 d*4 dB,, dJ
+ 3lnr+1)+ 10 _ 10 +R 10 73
S Glnr+1) f14)[r3 dr? j dr “dr 73)
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2 .
iJlo[l—l—(fsTr—i-f” Inr+ £,)G, +(fy = f)r’ + fir ™7+ furt Inr+ £, 1nr+f]4)J

_H_szlor—Nbf1 del1 (Nf2 Ny Ny f 4—1)0’]11 +Nbf27”_Nbfl_l dB,,
I3

) (74)
r dr dr
ir(C,—-C,) -N,f, xr—2 f fr2
L 02 (A (— 2 P+ 4B > Inr+ £,)G, +(f, — fo)r’
N, N, r
~fiN, d dB N, d  dJ
+ for T f? 7+ folnr+ fi)) = —(r— 25+ - 10), (75)
dr N, dr
with the appropriate boundary conditions:
* 2 2
d4,, __ 7Y (ldAll_d Az“ A,[- i dA10+ d A10+1A10(G (fs fn)
dr  1+A4 R dr dr dr
+2f = f)+ [Q=3N, £+ NS FR T 4 f,(3+2InR))
R? 3-N, f;
+(G, (f5 %lnR—fl3R)+(f6 ~ IR+ LR+ iR’ InR
i dA l
+ fi,InR+ f,r 10 _ A,=0,
SR+ fr)os = '
« dB
B,+p d“=0, J“+77 dJl—O at r=R(z), (76)
r
A
A4, = m—Ju B,=0 at r=mn. (77)
The solutions of first-order system of & take the following forms:
. 2-N, £, 4-N, f, 2-2N, f.
Iy = l(flsor2 +f151”4 + fior P figr U flgr !
4-3N, f, 2N, f. 22N, f. 42N, f
+fit T fies T fres? Ut fir T
+(f192 Sio4 (f S ) g+ ) ~Nph + (S192 = S10) 160 = Sr61)
137 136 104
f193 fl91 N fl f193 _f191
Sioo = Sy Ny,
+ fi3e — Jin +[(MNbf2 + fis)r ! +f1577'2 +f158’”4
f193 _f191
2-N, f, 4-N, f, 4-2N, f 2-2N, f, 4-3N, f,
+ fisst T fisst T et T St T fla
N, f. 2-N, f, 4-N, f,
+ freer O Inr+[fior” PN+ frpr
N, f 222N, f 42N, f, ~N,.f,
+ figr U it T S 1](111”)2 + fraal 1(11'1”)3)7 (78)

fso

2-N, f; 4-N, f; 4-2N,
+f178r +f1797” +fio? T St T Sl !

11_1(
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N,

22N, /, 43N, N, S, 22N,/
_Ft(fmzr P+ flal T st T fles? )
b

f192 f194 -Nph (f192 _f194)f173 +f194f191 _f192fl93
(f193 f191 f174 " f177) " f193 _f191

Jio2 = /i Jioo = /i N, > 4
+ fize +1 D24y (2 175 + fig)T T F figg T+ fas?
f193 _f191 f193 _f191

21N, 4N, J, 42N, J, 22N, /, 43N, f
b/ b/ v/ »h 4 »/i
+ Jisi? + fisa” + figs” __(f170 + freal

f 2N, f, 4N, f, f f
+.f166 Ks 1)]ln”+[f139r . + froo? - +f ot 4 =2y

N,

__Nt (f167’;]\lbf1 ‘*‘fl@’”ziz]\/bf1 + f1727"472Nbf1 )(In ’”)2 +[__Nt fl34’”7Nbf1
b b
fs
18pt + ](ln r?), (79)

jf389

11_1(]%47V "'f345’” + (o0 + 16

f 2 8N,/
_(f391 20N+ fa + [ O
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where the constants fl(z) ,1=31,32,....,392, are obtained during the calculations and are given in the appendix.

4 DISCUSSION OF THE RESULTS

In what follows, numerical calculations will be made. It is convenient to classify these calculations into two categories,
as follows:

4.1 PUMPING CHARACTERISTICS

In order to identify the quantitative effects of various parameters on the obtained distributions of the axial velocity w,
temperature @, nanoparticle volume fraction in the nanofluid o, pressure rise AP and friction force of the outer tube

AF,, the mathematical software (Mathematica) is used. Some important results are graphically displayed in Figures 2-8 as
follows.
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Figure 2-A describes the variation of axial velocity w versus (vs) Z -axis for different values of the nanoparticles Grashof
number R, . It is observed that, at the domain (—0.4 <z <0.6), the axial velocity increases with the increase of R, .

Therefore, it is depicted that nanofluid, with high concentration of nanoparticles possesses, cause higher values of the
velocity. So, higher nanoparticles volume fraction provides more resistance to the flow. Meanwhile, at the complementary of

this domain, the axial velocity decreases with the increase of R, . Figure 2-B indicates the variation of axial velocity w(z) for
different values of the local temperature Grashof number R, . It is showed that R, has the same effects as that of R, on
the axial velocity profile. Figure 2-C shows the variation of axial velocity W(z) for different values of the maximum height of

stenosis /1. It is observed that when the domain of z becomes (—0.8 <z <0.8), the axial velocity decreases with the
increase of /. Meanwhile, at the complementary of this domain, the curves of these velocities are coincide to each others. It
is also found that, in case of no-stenosis (/4 = 0), the values of the axial velocity is greater than that in case of stenosis.
Therefore, for the diseases of blood clot, the existence of the clots at the artery straitens the blood flow and leads to a
harmful effects for the body organs [9]. Figure 2-D indicates the variation of axial velocity w(z) for different values of the

velocity slip parameter 7/* . It is observed that the axial velocity decreases with the increase of }/* . It is also found that, in

case of no-slip condition ( }/* = (), the value of the axial velocity is higher than that in case of slip condition.

Figure 3-A indicates the variation of axial velocity w vs the radial distance 7 for different values of the taper angle ¢ .

The importance of the effect of vessel tapering with the shape of stenosis deserves special attention. Also, the tapering has a
significant aspect arterial system [11]. Therefore, we are interested in studying the flow through a tapered tube with
stenosis. It is observed that, at the domain (0.2 < r <0.8), in case of the diverging tapered artery ¢ =0.05(> 0), the values

of the axial velocity are smaller than those in case of the non tapered artery ¢ =0 and the convergent tapered one
@ =—-0.05(< 0) . However, at the complementary of this domain, the inverse occurs. Figure 3-B shows the variation of axial
velocity w(#) for different values of the ratio of relaxation time to retardation one A, . It indicates that, at the domain (
0.2 £ r £0.8), the axial velocity increases with the increase of 21 . It is also found that, in case of Newtonian fluid (/l1 =0),
the value of the axial velocity is lower than that in case of non-Newtonian fluid. Meanwhile, at the complementary of this
domain, the axial velocity decreases with the increase of /?1 . It is also noted that, in case of Newtonian fluid (21 =0), the

value of the axial velocity is greater than that in case of non-Newtonian fluid. Figure 3-C indicates the variation of axial
velocity w(r) for different values of the flow rate Q. It is observed that, at the domain (0.2 <r <0.8), the axial velocity

decreases by the increasing of Q However, the inverse occurs at the at the complementary of this domain. Figure 3-D
indicates the variation of axial velocity w(z) for different values of the Reynolds number R, . It is observed that, the axial
velocity increases with the increase of Re. Through this figure, the numerical calculations depict that as the Reynolds
number increase, both of viscosity and flow resistance are decreased, the axial velocity is also increased.

The special case of ignoring the parameters ¢ =0 (no-tapered ), #=0 (no-stenosis)) R, =R, =R,, =0 (no
nanoparticles), N[,Nb tends to zero (no temperature), ¥} = 0, 7/* = 77* = ﬁ'* =0 and ﬂ1 =0 is depicted in figure 4-A.
Through this figure we have recorded the previous results which have been early obtained by Fung [30]. Also, the special

case of ignoring the parameters R, = R, = R, =0 (no nanoparticles), N,, N, tends to zero (no temperature), 7; =0,

}/* = 77* = ,B* =0 and ﬁ,, =0 is depicted in figure 4-B. Through this figure, we have recorded the previous results which
have been early obtained by Verma and Parihar [11].

Figure 5-A describes the variation of temperature @(r) for different values of the thermophoresis parameter N, . ltis
observed that the temperature profile decreases with the increase of N, in the region 0 <7 <0.2. However, increases in

the region 0.2 <r<0.9 . The variation of temperature profile @(r) for different values of the Brownian motion parameter
Nb is described in figure 5-B. It is indicated that the Brownian motion parameter N, and the thermophoresis parameter
Nt have qualitatively similar effects on temperature profile. Figure 5-C indicates the variation of temperature @(r) for
different values of the thermal slip parameter 77*. It is observed that, in the domain 0 <7 <0.2, the temperature profile

increases with the increase of 77* . It is also found that, in case of no-slip condition (77* = (), the value of the temperature
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profile is lower than that in case of slip condition. Meanwhile, at the complementary of this domain, the inverse occurs.
Figure 6-A indicates the variation of the nanoparticle volume fraction in the nanofluid o vs 7 -axis for different values of the
thermophoresis parameter Nt . It is clear that the nanoparticles phenomena increases with the increase of Nt in the region
0<r<0.2. However, this influence decreases in the region 0.2 <r<0.8. Figure 6-B describes the variation of
nanoparticle volume fraction in the nanofluid o vs 7 -axis for different values of the Brownian motion parameter Nb Ltis
shown that the Brownian motion parameter N, and the thermophoresis parameter N, have qualitatively opposite effects
on the nanoparticles phenomena. Figure 6-C indicates the variation of the nanoparticle volume fraction in the nanofluid

o(r) for different values of the nanoparticle slip parameter J3". It is observed that, in the domain 0<r<0.2, the

nanoparticles phenomena increases with the increase of ﬂ* . It is also found that, in case of no-slip condition (ﬂ* =0), the

value of nanoparticle volume fraction is lower than that in case of slip condition. Meanwhile, at the complementary of this
domain, the inverse occurs. Figures 5-A, 5-B, 5-C, 6-A, 6-B and 6-C show that the temperature profile and nanoparticle
phenomena have qualitative similar behavior for slip parameters and Brownian motion parameter. However, they have
qualitative opposite behavior for the thermophoresis parameter.

The pressure rise AP is plotted vs the mean flow rate for different values of the thermophoresis parameter N, in figure
7-A. It is observed that with an increase in Nt , the pressure rise decrease. Figure 7-B describes the variation of pressure rise
vs the mean flow rate for different values of the Brownian motion parameter Nb. It is observed that the pressure rise
increase with the increase of Nb . Furthermore, the peristaltic pumping is defined at the region when (AP >0 and 0 >0)
(pumping region). It os noticed that the peristaltic pumping region becomes wider as the Brownian motion parameter N,
increases. The pressure rise is plotted vs the mean flow rate for different values of the velocity slip parameter ]/* in figure 7-
C. It is found a critical flow rate Q. at (Q = 0.5) approximately. As the domain of the ( becomes (—0.1< Q0 <(Q,), the
pressure rise decrease with the increase of J.. Also, it is found that the transmission of the curves through a non slip

condition (}/* =0) is greater than that through the slip condition (}/* # (0). Meanwhile, the inverse occurs at the
complementary of this domain. Figure 7-D shows the variation of pressure rise vs the mean flow rate for different values of

the ratio of relaxation time to retardation one A, . It is found that the pressure rise decrease with the increase of 4, . Also, it

is found that the transmission of the curves through a Jeffrey fluid (A, # 0 ) is greater than that in a Newtonian fluid (4, =0

). From the pervious figures, it is found that the increase in mean flow rate decreases the pressure rise. Therefore, the
maximum flow rate is achieved at zero pressure rise. Also, the maximum pressure rise occurs at zero flow rate. Finally, the
relation between pressure rise and mean flow rate is linear.

The friction force of the outer tube AF, is plotted vs the mean flow rate for different values of the velocity slip
parameter 7/* in figure 8-A. It found a critical flow rate QC at (Q = 0.5) approximately. As the domain of the O becomes (
-1<0< Qc ), the friction force increases with the increase of }/*. Also, it is found that the transmission of the curves

through a non slip condition (}/* = () is lower than that through the slip condition ( }/* # 0 ). Meanwhile, the inverse occurs
at the complementary of this domain. Figure 8-B shows the variation of friction force vs the mean flow rate for different
values of the ratio of relaxation time to retardation one 4, . It is showed that 4, has the same effects as that of 7" on the

friction force. It is noticed that, from these paragraph and previous paragraph, the friction force has the opposite behavior
compared to the pressure rise.
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Fig. 3. indicates the variation of the axial velocity W with ¥ -axis for different values of ¢ , 21 and Q .
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Fig. 6. indicates the variation of the nanoparticle volume fraction in the nanofluid o with ¥ -axis for different values of N e

*
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Fig. 7. indicates the variation of pressure rise AP vs mean flow rate for different values of N (r N,, Y and /'L, .
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Fig. 8. indicates the variation of friction force of outer tube AF2 vs mean flow rate for different values of ¥ and i, .

4.2 TRAPPING

In addition to the pumping phenomenon, trapping is considered as another motivating physical phenomenon in
peristaltic motion. As the walls are stationary, trapping phenomenon may be anticipated that the streamlines have a shape
similar to the walls. However, in the wave frame, some streamlines under specific conditions may be separated to enclose a
bolus of fluid particles in closed streamlines. Therefore, the structure of an internally circulating bolus of the fluid by closed
stream lines is defined as a trapping. Furthermore, this trapped bolus is moved forward along with the speed of the
peristaltic wave. Also, bolus is defined as a volume of fluid bounded by closed streamlines. In addition, the trapping
phenomenon has been discussed by many researchers, such that Shapiro [6] and Jaffrin [32]. The following figures illustrate

the stream lines graphes, in the domain 0 <z <2, for different values of several parameters. The domain 0 <z <0.8
represents the region of stenosis.

The effect of the of the maximum height of stenosis / on trapping is illustrated in figure 9-A. It is observed that the
trapped bolus increases in size by the increasing of /. The effect of the taper angle @ is illustrated in figure 9-B. It is

indicated that the taper angle ¢ and the the maximum height of stenosis / have qualitatively similar effects on the size of
trapped bolus. The effects of the Brownian motion parameter Nb on the trapping are displayed in figure 10-A. It is observed

that the bolus decreases in size by the increasing of Nb . The effects of the thermophoresis parameter Nt on the trapping

are displayed in figure 10-B. It is indicated that the Brownian motion parameter Nb and the thermophoresis parameter Nt
have qualitatively similar effects on the size of trapped bolus. The effect of the of the mean flow rate Q on trapping is

illustrated in figure 11-A. It is noticed that the trapped bolus increases in size by the increasing of (. The effect of the

velocity slip parameter 7/* is illustrated in figure 11-B. It is indicated that the velocity slip parameter }/* and the mean flow

rate Q have qualitatively similar effects on the size of trapped bolus.
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Fig. 9. Streamlines for different values of h and ¢ , respectively.

(=

Fig. 10. Streamlines for different values of N, and N, respectively.
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Fig. 11. Streamlines for different values of Q and y *, respectively.

5 CONCLUSIONS

In this study we have presented a theoretical approach to investigate the effect of heat transfer on peristaltic flow of
Jeffrey nanofluid in a vertical annulus. The flow is streaming through a tapered artery with mild stenosis. Furthermore, the
influences of slip conditions of velocity, heat and nanoparticles are also considered. The governing equations of motion,
energy and nanoparticle volume fraction are based on a perturbation technique. These equations are analytically solved in
accordance with the appropriate boundary conditions. The distributions of velocity, stream function, temperature and
nanoparticle are obtained up to the first order. The pressure rise and friction force are obtained in terms of dimensionless
flow rate Q by using numerical integration. Numerical calculations are adopted to obtain the effects of several parameters,

such as the Reynolds number, the slip parameters, Brownian motion parameter, thermophoresis parameter, the taper angle,
nanoparticles Rayleigh number, thermal Rayleigh number, the ratio of relaxation to retardation times and the maximum
height of stenosis. Trapping phenomena is also discussed.

The concluding remarks may be drawn as follows:

¢ Pumping characteristics

(a) As the domain (—0.4 <z <0.6), the axial velocity increases with the increase of R, and R,. Meanwhile, the inverse

occurs at the complementary of this domain.
(b) The axial velocity decreases with the increase of j/* .

(c) As the domain of the maximum height of stenosis % becomes (—.8 <z <0.8), the axial velocity decreases with the
increase of /. Meanwhile, at the complementary of this domain, the curves of this velocity are coincide to each others.

(d) The temperature profile decreases with the increase of N, in the region 0 <7 <0.2. However, it increases in the region

t
02<r<09.

(e) The Brownian motion parameter Nb and the thermophoresis parameter Nt have qualitatively similar effects on

temperature profile.

(f) In the domain 0 <r <0.2, the nanoparticles phenomena increases with the increase of ﬁ* . It is also found that, in case

of no-slip condition (ﬂ* =), the value of nanoparticle volume fraction is lower than that in case of slip condition.
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Meanwhile, at the complementary of this domain, the inverse occurs.
(g) The values of the pressure rise increases with the increase of Nb .

(h) The increase in mean flow rate decreases the pressure rise. Therefore, the maximum flow rate is achieved at zero
pressure rise. Also, the maximum pressure rise occurs at zero flow rate.

(i) There exist a critical flow rate QC

at (Q =0.5) approximately. As the domain of the O becomes (-1<Q<(Q,), the
friction force increases with the increase of 7/* . Meanwhile, the inverse occurs at the complementary of this domain.

(j) The friction force has the opposite behavior compared to the pressure rise.

¢ Trapping

(a) The size of the trapped bolus decreases with the increasing of Brownian motion parameter Nb and thermophoresis

parameter N, .

(b) The size of the trapped bolus increases with the increasing of maximum height of stenosis /1, taper angle @ and slip

parameter )/* .

To the best of our knowledge, This study is very important in the field of fluid mechanics because it have many applications
in many scientific fields such as medicine, medical industrial and others.

Caption of figures

* Figure 2- A is prepared for various values of the parameters: L=1, d =2, z,=0.8, 0=3, =02, N, =0.8,
N,=2, y=n'=8 =01, ¢4=0.05, h=0.13, 4,=5, R,=2, R,=2, V; =1, R, =10 and (
R, =234).

Figure 2-B is prepared for various values of the parameters: L =1, d =2, z,=0.8, 0=3, n=0.2, N, =0.8,
N, =2, y'=n"=8=01, ¢4=0.05, h=0.13, 4, =5, R, =08, R, =2, V, =1, R, =10 and (
R, =234).

Figure 2-C is prepared for various values of the parameters: L=1, d =2, z,=0.8, 0=3, =02, N, =0.8,
N, =2, y=0"=p=0.1, $=005, R, =2, 4 =5 R =08, R,=2, V, =1, R, =10 and (
h=0,0.05,0.1).

Figure 2-D is prepared for various values of the parameters: L=1, d =2, z,=0.8, 0=3, r=0.2, N, =0.8,
N,=2,R,=7,n =4 =01, =005, h=0.13, 4, =5, R,=0.8, R, =2, V, =1, R, =10 and (
y"=0,0.1,0.2).

Figure 3- A is prepared for various values of the parameters: L=1, d =2, z,=0.8, 0=3, n=0.2, N, =0.8,
N, =2, y=0"=p=0.1, R,=2, h=0.13, 4 =5 R,=08, R,=2, V, =1, R, =10 and (
¢ =0,0.05,-0.05).

Figure 3-B is prepared for various values of the parameters: L =1, d =2, z,=0.8, 0=3, n=0.2, N, =0.8,
N, =2, y'=n"=4 =01, =005, h=0.13, R, =25, R,=0.8, R, =2, V, =1, R, =10 and (
A, =0,1,3).

Figure 3-C is prepared for various values of the parameters: L=1, d =2, z,=0.8, =0.2, N, =0.8, N, =2,
¥y =n"=f=01,¢4=005h=0.13, 4, =5,R, =08, R,=2,V, =1, R, =10 and (Q =3.4,5).
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» Figure 3-D is prepared for various values of the parameters: L=1, d =2, z,=0.8, R, =2, 1,=0.2, N, =0.8,
N, =2, y'=n"=8 =01, ¢=0.05, h=0.13, 4, =5, R,=08, R,=2, V, =1, 0=3 and (
R, =0.1,0.4,0.8).

e Figure 4-A is prepared for various values of the parameters: L=1, d=2, Zo=0.8, (

Ry, v,N,,N..v' .0, B ,6,h, A, R, ,R,,V;):0,0=3and R, =10.

o Figure 4-B is prepared for various values of the parameterss L=2, b=0.01, L,=0.8, (
Ry.v,N,,N..v".n .8, 2.R,,R,,V;):0,0=3,$=0.005, h=0.2 and R, =10.

e Figure 5-A is prepared for various values of the parameters: L=1, d =2, z,=0.8, =02, N,=0.2,
y =n =B =01,4=005,h=0.1and(N, =1,8,32).

* Figure 5-B is prepared for various values of the parameters: L=1, d=2, z,=0.8, =02, N,=8§,
y =n =B =01,4=005,h=0.1and (N, =0.8,4,12).

» Figure 5-C is prepared for various values of the parameters: L=1, d =2, z,=0.8, =02, N, =2, N, =038
¥ =B =01,4=005 h=0.1and(n =0,12).

* Figures 6-A is prepared for various values of the parameters: L=1, d=2, z,=0.8, =02, N,=0.8,
7' =n"=p"=01,¢=005,h=0.1and(N, =1,8,32).

e Figures 6-B is prepared for various values of the parameters: L=1, d=2, z,=0.8, n=0.2, N, =8,
7y =n =B =01,$4=0.05,7h=0.1and (N, =0.824).

« Figure 6-C is prepared for various values of the parameters: L=1, d =2, z,=0.8, =02, N,=2, N, =0.8
¥y '=n"=0.1,¢=005,h=0.1and (S =0,0.4,0.6).

» Figure 7- A is prepared for various values of the parameters: L=1, d =2, z,=0.8, =02, N, =08, R, =9
y =n=p=01,4=005h=01,4=04,R =2,R,=2,V, =1, R =2 and (N, =1.6,1.8,2).

* Figure 7-B is prepared for various values of the parameters: L=1, d =2, z,=0.8, =02, N,=1, R, =9
y=n=p=01,4=005h=01,4=5 R =2,R,=2,V,=1,R, =2 and (N, =0.8,0.9,1).

« Figure 7-C is prepared for various values of the parameters: L=1, d =2, z,=0.8, =0.2, N, =1, R, =2
N, =3,7=8=01,¢4=005h=0.1,4,=04, R =2,R,=2,V, =1, R, =2 and (¥ =0,0.2,0.4).

» Figure 7-D is prepared for various values of the parameters: L=1, d =2, z,=0.8, =02, N, =1, R, =9
y =n"=f=01,¢4=005 k=01, N=3,R =2,R,=2,V, =1, R, =2 and (4 =0,1,2).

* Figure 8- A is prepared for various values of the parameters: L=1, d =2, z,=0.8, =02, N, =0.8, R, =2
N =1,n"=8=01,4=005,h=0.1, 4, =5 R, =2,R,=2,V,=1,R, =2 and (¥ =0,0.2,0.4).

» Figure 8-B is prepared for various values of the parameters: L=1, d =2, z,=0.8, =02, N, =0.8, R, =2
y =n" =8 =01,4=005 k=01, N=1,R,=2,R,=2,V,=1,R =2 and (4 =0,1,2).

* Figure 9-A : Stream lines for L=2, d =2, z,=0.8, 0=3, r=02, N,=0.8, N, =1, }/*:77*=ﬂ* =0.1,
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$=0.005, R, =08, =2, R, =2, R, =2,V, =1, R, =10 and (h=0.1,0.13,0.17).

* Figure 9-B: Stream lines for L=2, d=2, z,=0.8, 0=3, =02, N, =08, N, =1, y*:n*:ﬂ*:()_l,
hZO.l,RN=0.8,ﬂ1=2,Ra=2,RM=2,V0*=l,Re=10 and (¢ =0.005,0.01,0.03).

* Figure 10- A : Stream lines for L=2, d =2, z,=0.8, 0=3, n=0.2, h=0.1, N, =2, }/*:77*=ﬂ* =0.1,
$=0.005,R, =08, 4,=2,R =2,R,=2,V, =1, R, =10 and (N, =0.8,2,3).

* Figure 10-B: Stream lines for L=2, d =2, z,=0.8, 0=3,n,=0.2, h=0.1, N, =0.8, }/* =77* :ﬂ* =0.1,
$=0.005, R, =08, 4,=2,R,=2,R,, =2, VO* =1, R, =10 and (N, =1,1.2,1.5).

* Figure 11- A : Stream linesfor L=2,d =2, z,=0.8, N, =0.8, =02, h=0.1, N, =1, }/* =77* :ﬂ* =0.1,
$=0.005, R, =08, 4,=2,R,=2,R,, =2, VO* =1, R, =10 and (0 =3,3.01,3.03).

 Figure 11-B: Stream lines for L=2, d=2, z,=0.8, 0=3, n=02, h=0.1, N,=08, N, =1,

*

n" =B =0.1,$=0005 R, =08, 4=2,R =2,R,=2,V,=1,R =10 and (7" =0.1,0.18,0.2).
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