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ABSTRACT: The aim of this paper, is to use the Buongiorno’s mathematical model for studying the effect of boundary 

conditions and some control parameters on the onset of convective instability in presence of a uniform vertical magnetic 
field in a confined Darcy-Brinkman porous medium filled of an electrically conducting nanofluid which will be considered as 
Newtonian and heated uniformly from below. The linear study which was achieved in this investigation shows that the 
thermal stability of  nanofluids depends of the state of the horizontal boundaries (rigid or free), the magnetic Chandrasekhar 
number , the buoyancy forces, the Brownian motion, the thermophoresis and other thermo-physical properties of 
nanoparticles. The governing differential equations are transformed into a set of ordinary differential equations by using 
similarity transformations, these equations will be solved analytically by converting our boundary value problem to an initial 
value problem, after this step we will approach the searched solutions numerically by polynomials of high degree to obtain a 
fourth-order-accurate solution.  

KEYWORDS: Linear stability, Nanofluid, Magnetic field, Brownian motion, Thermophoresis, Power series. 

1 INTRODUCTION 

The increase the effective thermal conductivity of the coolant fluids in a confined geometry has an interesting role in the 
development of the cooling systems in the nano-technological sector. The fluids such as water, oil or ethylene glycol are 
frequently found in the micro-electronical cooling systems, they have only a low thermal conductivity at the room 
temperature compared to the crystalline solids, for this reason we find some regular fluids which are unable to evacuate the 
low heat loss by some systems. Therefore, we prefer using fluids containing nano-sized metallic particles (about 1-100nm) in 
suspension to obtain a nanofluid characterized by a high effective thermal conductivity compared to the basic fluid. The 
experiment shows that the presence of the nanoparticles (in pure or oxidized forms) in a base fluid allows us to obtain a 
significant growth in the thermal conductivity of the mixture (base fluid + nanoparticles), for this purpose we find that the 
nanofluids are currently used in the cooling of advanced electronic or nuclear systems.  

The nanofluid term was introduced by Choi [1] in 1995 and remains usually used to characterize this type of colloidal 
suspension. Buongiorno [2] was the first researcher who treated the convective transport problem in nanofluids, he was 
established the conservation equations of a non-homogeneous equilibrium model of nanofluids for mass, momentum and 
heat transport. The thermal problem of instability in nanofluids with rigid-free and free-free boundaries was studied by Tzou 
[3, 4] using the eigenfunction expansion method. The onset of convection in a horizontal nanofluid layer of finite depth was 
studied by Nield and Kuznetsov [5].The problem of natural convection in a Newtonian nanofluid saturated a porous or non-
porous  layer has been studied in different situations by several authors [3-15] ,when the volumetric fraction of nanoparticles 
is constant at the horizontal walls limiting the layer, the authors [3-9] found that the critical Rayleigh number can be 
decreased or increased by a significant quantity depending on relative distribution of the nanoparticles between the top and 
bottom walls.  
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The magneto-convection is a phenomenon which combines the effects of buoyancy forces and Lorentz forces in the 
presence of a magnetic field and gravity in a horizontal layer of an electrically conducting fluid .The study of the thermal 
convection in an electrically conducting fluid driven by the thermal buoyancy in the presence of a uniform magnetic field  was 
treated theoretically and experimentally by several authors [16-19] in the past under varying assumptions of hydrodynamic 
and hydromagnetism  which were given by Chandrasekhar [20] . The thermal instability of a fluid layer heated from below 
with magnetic field plays an important role in the interior of the earth, chemical and biochemical engineering, atmospheric 
physics, and many physical phenomenons related to the domain of geophysics and astrophysics. 

Very recently, the problem of natural convection for an electrically conducting nanofluid in a non-porous medium with a 
uniform vertical magnetic field is studied by several authors using the Buongiorno’s mathematical model which combines the 
contribution of the Brownian motion and the thermophoresis of nanoparticles in the case where the volume fraction of 
nanoparticles is considered as constant at the boundaries of the layer, among the principal authors we find Urvashi Gupta et 
al. [21] who studied analytically the linear thermal stability in the case where the nanoparticles are concentrate near the 
bottom of the layer for the free-free boundaries and Dhananjay Yadav et al. [22,23] who studied numerically the same 
problem in a non-rotating and rotating medium for the free-free, rigid-free and rigid-rigid boundaries with a concentration of 
the nanoparticles greater near the top of the layer, these authors are used the Galerkin weighted residuals method based on 
well-defined test functions to obtain an approximate solution to the precedent problem. 

Our work consists of studying the Rayleigh-Bénard problem in a Darcy-Brinkman porous medium saturated by an 
electrically conducting nanofluid layer and excited by a uniform vertical magnetic field in the case where the volumetric 
fraction of the nanoparticles at the top wall is considered as greater than that of the bottom for the free-free, rigid-free and 
rigid-rigid boundaries. The studied problem will be solved with a more accurate numerical method based on analytic 
approximations using the power series method. 

 In this investigation we assume that the nanofluid is Newtonian and the parameters which appear in the governing 
equations are considered constant in the vicinity of the temperature of the cold wall Tc

∗ which we took it as a reference 
temperature. Finally we will impose that the flow is laminar and the radiation heat transfer mode between the horizontal 
walls will be negligible compared to other modes of heat transfer.  

To show the accuracy of our method in this study, we will check some results treated by Dhananjay Yadav et al. [22], 
concerning the study of the convective instability of a nanofluid (water + alumina) in presence of a uniform vertical magnetic 
field. Our numerical method is used in this investigation to give results with an absolute error of the order of 10-5 to the exact 
critical values characterizing the onset of the convection. 

2 MATHEMATICAL FORMULATION 

We consider an infinite horizontal layer of an incompressible electrically conducting nanofluid heated uniformly from 
below and confined in a Darcy-Brinkman porous medium between two identical horizontal surfaces in the presence of a 

uniform vertical magnetic field H⃗⃗ 0 = H0e⃗ z  and the gravity field  g⃗ = −ge⃗ z  where the temperature and the volume fraction 
of nanoparticles are kept constant on the boundaries (Fig.1). The used nanofluid is considered as Newtonian and 
characterized by a low concentration of nanoparticles which are assumed as not magnetic .The thermo-physical properties of 
the nanofluid (viscosity, thermal conductivity, specific heat, magnetic permeability, and electrical resistivity) are taken as 
constants in the analytical formulation except for the density variation in the momentum equation which is based on the 
Boussinesq approximations. The asterisks are used to distinguish the dimensional variables from the nondimensional 
variables (without asterisks). 

 
Fig. 1. Physical configuration 
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Within the framework of the assumptions which were made by Buongiorno [2], Tzou [3,4], D.A. Nield and A.V. 
Kuznetsov [5,6], Chandrasekhar [20], Urvashi Gupta et al. [21] and Dhananjay Yadav et al. [7,22,23] in their 
publications for the Newtonian nanofluids, we can write the basic equations of conservation which govern our 
problem in dimensional form as follows: 

∇⃗⃗ ∗. V⃗⃗ ∗ = 0  (1) 

ρ0

ε
[
∂V⃗⃗ ∗

∂t∗
+

1

ε
(V⃗⃗ ∗ . ∇⃗⃗ ∗)V⃗⃗ ∗] = −∇⃗⃗ ∗P∗ + μ̃∇⃗⃗ ∗

2
V⃗⃗ ∗ −

μ

K
V⃗⃗ ∗ +

μe

4π
(∇⃗⃗ ∗ × H⃗⃗ ∗) × H⃗⃗ ∗ + {ρ0[1 − β(T∗ − Tc

∗)](1 − χ∗) + ρpχ
∗}g⃗  (2) 

(ρc)m
∂T∗

∂t∗
+ (ρc)f(V⃗⃗ 

∗ . ∇⃗⃗ ∗)T∗ = km∇⃗⃗ ∗
2
T∗ + ε(ρc)p  (DB ∇⃗⃗ ∗χ∗ ∇⃗⃗ ∗T∗ + (

DT

Tc
∗) ∇⃗⃗ ∗T∗ ∇⃗⃗ ∗T∗) (3) 

∂χ∗

∂t∗
+

1

ε
(V⃗⃗ ∗ . ∇⃗⃗ ∗)χ∗ = DB∇⃗⃗ ∗

2
χ∗ + (

DT

Tc
∗) ∇⃗⃗ ∗

2
T∗ (4) 

∇⃗⃗ ∗ . H⃗⃗ ∗ = 0 (5) 

∂H⃗⃗ ∗

∂t∗
+

1

ε
(V⃗⃗ ∗ . ∇⃗⃗ ∗)H⃗⃗ ∗ = (H⃗⃗ ∗ . ∇⃗⃗ ∗)V⃗⃗ ∗ + η∇⃗⃗ ∗

2
H⃗⃗ ∗ (6) 

Where  ∇ 
∗
  is the vector differential operator, η = 1 4πμeκ⁄   and κ are respectively the resistivity and the electrical 

conductivity of the nanofluid. 

If we consider the following dimensionless variables: 

(x∗; y∗; y∗) = L(x; y; z) ; t∗ =
σL2

αm
 t ; V⃗⃗ ∗ =

αm

L
V⃗⃗   ; P∗ =

μαm

K
P ; T∗ − Tc

∗ = (Th
∗ − Tc

∗)T ; χ∗ − χh
∗ = (χc

∗ − χh
∗ )χ ; H⃗⃗ ∗ = H0H⃗⃗        

Then, we can get from equations (1)-(6) the following adimensional forms: 

∇⃗⃗  . V⃗⃗ = 0 (7) 

Va
−1 [σ−1

∂V⃗⃗ 

∂t
+ ε−1(V⃗⃗  . ∇⃗⃗ )V⃗⃗ ] = −∇⃗⃗ (P + RMz) + Da∇⃗⃗ 

2V⃗⃗ − V⃗⃗ + PrPrm
−1Q(∇⃗⃗ × H⃗⃗ ) × H⃗⃗ + [(1 − χh

∗ )RaT − RNχ − ∆χ∗RaTχ]e⃗ z (8) 

∂T

∂t
+ (V⃗⃗  . ∇⃗⃗ )T = ∇⃗⃗ 2T + NBLe

−1 ∇⃗⃗ χ. ∇⃗⃗ T + NANBLe
−1∇⃗⃗ T. ∇⃗⃗ T (9) 

σ−1
∂χ

∂t
+ ε−1(V⃗⃗  . ∇⃗⃗ )χ = Le

−1∇⃗⃗ 2χ + NALe
−1 ∇⃗⃗ 2T (10) 

∇⃗⃗  . H⃗⃗ = 0 (11) 

σ−1
∂H⃗⃗ 

∂t
+ ε−1(V⃗⃗  . ∇⃗⃗ )H⃗⃗ = (H⃗⃗  . ∇⃗⃗ )V⃗⃗ + PrPrm

−1∇⃗⃗ 2H⃗⃗  (12) 

Such that: 

σ =
(ρc)m
(ρc)f

  ;  αm =
km

(ρc)f
 ;  Pr =

μ

ρ0αm
 ;  Prm =

μ

ρ0η
 ;  Le =

αm

DB
 ;  Da =

μ̃K

μL2
 ;  Va =

εL2Pr

K
 ;  Q =

μeH0
2K

4πημ
 ;  ∆χ∗ = χc

∗ − χh
∗   

NB = ε
(ρc)p

(ρc)f
∆χ∗ ;  ∆T∗ = Th

∗ − Tc
∗ ; Ra =

ρ0gβ∆T∗KL

μαm
; RM =

gKL[ρpχh
∗ + ρ0(1 − χh

∗ )]

μαm
 ; RN =

gKL(ρp − ρ0)∆χ∗

μαm
;  NA =

DT

DBTc
∗

∆T∗

∆χ∗
 

2.1 BASIC SOLUTION 

The basic solution of our problem is a quiescent thermal equilibrium state, it’s assumed to be independent of time where 
the equilibrium variables are varying  in the z-direction, therefore: 

V⃗⃗ b = 0⃗  (13) 

Pb = Pb(z)       ;      Tb = Tb(z)         ;         χb = χb(z)       ;     H⃗⃗ b = Hb(z)e⃗ z  (14) 



Abderrahim Wakif, Zoubair Boulahia, Mostafa Zaydan, Naoufal Yadil, and Rachid Sehaqui 

 

 

ISSN : 2028-9324 Vol. 14 No. 4, Feb. 2016 1051 
 

 

Tb = 1       ;    χb = 0     ;    H⃗⃗ b = e⃗ z      at       z = 0 (15) 

Tb = 0       ;    χb = 1     ;    H⃗⃗ b = e⃗ z      at       z = 1 (16) 

If we introduce the precedent results into equations (7)-(12), we obtain: 

∇⃗⃗ (Pb + RMz) = PrPrm
−1Q(∇⃗⃗ × H⃗⃗ b) × H⃗⃗ b + [(1 − χh

∗ )RaT − RNχ − ∆χ∗RaTχ]e⃗ z (17) 

d2Tb

dz2 + NBLe
−1 (

dχb

dz

dTb

dz
) + NANBLe

−1 (
dTb

dz
)
2

= 0      (18) 

d2χb

dz2 + NA

d2Tb

dz2 = 0   (19) 

d2Hb

dz2 = 0 (20) 

After using the boundary conditions (15) and (16), we can integrate the equations (19) and (20) for obtaining: 

χb = −NATb + (1 − NA)z + NA  (21) 

d2Tb

dz2 + (1 − NA)NBLe
−1

dTb

dz
= 0    (22) 

Hb = 1 (23) 

According to the analyzes of Buongiorno [2], Nield and Kuznetsov [5] we have for the majority of the Newtonian 
nanofluids: 

NA~1 − 101 ;  Le~102 − 103 ;  ∆χ∗Le
−1~10−6 − 10−5 

Hence, the product (NA − 1)NBLe
−1 is very small, if we neglect this term in equation (22), we will obtain the following 

solutions:  

Tb = 1 − z (24) 

χb = z (25) 

2.2 STABILITY ANALYSIS  

For analyzing the stability of the system, we superimpose infinitesimal perturbations on the basic solutions as follows: 

    T = Tb + T′   ;         V⃗⃗ = V⃗⃗ b + V′⃗⃗  ⃗    ;    P = Pb + P′       ;     χ = χb + χ′    ;         H⃗⃗ = H⃗⃗ b + H′⃗⃗⃗⃗  (26) 

In the framework of the Oberbeck-Boussinesq approximations, we can neglect the terms coming from the product of the 
temperature and the volumetric fraction of nanoparticles in equation (8), if we suppose also that we are in the case of small 
temperature gradients in a dilute suspension of nanoparticles, we can obtain after introducing the expressions (26) into 
equations (7)-(12) the following linearized equations: 

∇⃗⃗  . V′⃗⃗  ⃗ = 0 (27) 

(σVa)
−1

∂V′⃗⃗  ⃗

∂t
= −∇⃗⃗ P′ + Da∇⃗⃗ 

2V′⃗⃗  ⃗ − V′⃗⃗  ⃗ + PrPrm
−1Q(∇⃗⃗ × H′⃗⃗⃗⃗ ) × e⃗ z + (RaT

′ − RNχ′)e⃗ z (28) 

∂T′

∂t
− w′ = ∇⃗⃗ 2T′ + NBLe

−1(1 − 2NA)
∂T′

∂z
− NBLe

−1
∂χ′

∂z
 (29) 

σ−1
∂χ′

∂t
+ ε−1w′ = Le

−1∇⃗⃗ 2χ′ + NALe
−1 ∇⃗⃗ 2T′ (30) 

∇⃗⃗  . H′⃗⃗⃗⃗ = 0 (31) 

σ−1
∂H′⃗⃗⃗⃗ 

∂t
=

∂V′⃗⃗  ⃗

∂z
+ PrPrm

−1∇⃗⃗ 2H′⃗⃗⃗⃗  (32) 
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After application of the curl operator twice to equation (28) and using the equations (27) and (31), we obtain the 
following equations: 

(σVa)
−1

∂F′

∂t
= (Da∇⃗⃗ 

2 − 1)F′ + PrPrm
−1Q

∂G′

∂z∗ (33) 

(σVa)
−1

∂ 

∂t
(∇⃗⃗ 2w′) = (Da∇⃗⃗ 

2 − 1)∇⃗⃗ 2w′ + PrPrm
−1Q

∂  

∂z
(∇⃗⃗ 2Hz

′ ) + Ra∇⃗⃗ 2
2T′ − RN∇⃗⃗ 2

2χ′ (34) 

Such that: 

∇⃗⃗ 2
2 =

∂2  

∂x2 +
∂2  

∂y2  ;  F′ =
∂v′

∂x
−

∂u′

∂y
 ;  G′ =

∂Hy
′

∂x
−

∂Hx
′

∂y
 

Also, the equation (32) may be rewritten as: 

σ−1
∂Hz

′

∂t
=

∂w′

∂z
+ PrPrm

−1∇⃗⃗ 2Hz
′  (35) 

σ−1
∂G′

∂t
=

∂F′

∂z
+ PrPrm

−1∇⃗⃗ 2G′ (36) 

Taking into account the equation (35), we can get after simplification of the equation (34): 

(σ−1
∂  

∂t
− PrPrm

−1∇⃗⃗ 2) [(σVa)
−1

∂ 

∂t
− (Da∇⃗⃗ 

2 − 1)] ∇⃗⃗ 2w′ = PrPrm
−1Q∇⃗⃗ 2

∂2w′

∂z2 + Ra (σ−1
∂  

∂t
− PrPrm

−1∇⃗⃗ 2) ∇⃗⃗ 2
2T′ 

                                                                                                                                                            −RN (σ−1
∂  

∂t
− PrPrm

−1∇⃗⃗ 2) ∇⃗⃗ 2
2χ′ 

(37) 

Analyzing the disturbances into normal modes, we can simplify the equations (29), (30) and (37) by assuming that the 
perturbation quantities are of the form: 

(w′, T′, χ′) = (𝓌(z), 𝒯(z),𝒳(z))exp[i(axx + ayy) + nt] (38) 

After introducing the expressions (38) into equations (29), (30) and (37), we obtain: 

[nσ−1 − PrPrm
−1(D2 − a2)]{(σVa)

−1n − [Da(D
2 − a2) − 1]}(D2 − a2)𝓌 − PrPrm

−1Q(D2 − a2)D2𝓌 

                                                                 +Raa
2[nσ−1 − PrPrm

−1(D2 − a2)]𝒯 − RNa2[nσ−1 − PrPrm
−1(D2 − a2)]𝒳 = 0 

(39) 

𝓌 + [−n + (D2 − a2) + NBLe
−1(1 − 2NA)D]𝒯 − NBLe

−1D𝒳 = 0 (40) 

ε−1𝓌 − NALe
−1 (D2 − a2)𝒯 + [nσ−1 − Le

−1(D2 − a2)]𝒳 = 0 (41) 

Such that:          

D =
d  

dz
 ;  D2 =

d2  

dz2 

 

Where a is the resultant dimensionless wave number, such that: 

a = √ax
2 + ay

2 

The equations (39) - (41) will be solved subject to the following boundary conditions: 

- For the rigid-rigid case; 

𝓌 = D𝓌 = 𝒯 = 𝒳 = 0                at        z = 0 ; 1 (42) 

- For the free-free case; 

𝓌 = D2𝓌 = 𝒯 = 𝒳 = 0                at        z = 0 ; 1 (43) 
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- For the rigid-free case;  

𝓌 = D𝓌 = 𝒯 = 𝒳 = 0              at        z = 0 (44) 

𝓌 = D2𝓌 = 𝒯 = 𝒳 = 0             at        z = 1 (45) 

2.3 METHOD OF SOLUTION 

As we are interested in a stationary stability study, then the dimensionless growth rate n of each perturbation will be 
equal to zero  (n = 0) , therefore the equations (39)-(41) become: 

[Da(D
2 − a2) − 1](D2 − a2)𝓌 − QD2𝓌 − Raa

2𝒯 + RNa2𝒳 = 0 (46) 

𝓌 + [(D2 − a2) + NBLe
−1(1 − 2NA)D]𝒯 − NBLe

−1D𝒳 = 0 (47) 

ε−1𝓌 − NALe
−1 (D2 − a2)𝒯 − Le

−1(D2 − a2)𝒳 = 0 (48) 

We can solve the equations (46)-(48) which are subjected to the conditions (42),(43) or (44) and (45) by using a suitable 
change of variables that makes the number of variables equal to the number of boundary conditions, to obtain a set of eight 
first order ordinary differential equations which we can write it in the following form: 

d  

dz
ui(z) = aijuj(z) ;   1 ≤ i, j ≤ 8  (49) 

With: 

aij = aij(Ra, a, Q , NB, Le , RN, NA , ε , Da) 

The solution of the system (49) in matrix notation can be written as follows: 

U = BC (50) 

Where U is the unknown vector column of our problem, B is a square matrix of order 8 × 8 and C is a constant vector 
column, such that: 

B = ((bij(z))1≤i≤8
1≤j≤8

) 

U = ((ui(z))1≤i≤8
)
T
   

C = ((cj)1≤j≤8
)
T

 

If we assume that the matrix B is written in the following form: 

B = ((ui
j(z))1≤i≤8

1≤j≤8

) (51) 

Therefore, the use of four boundary conditions at z=0, allows us to write each variable ui(z) as a linear combination for 

four functions  ui
j(z) , such that: 

bij(0) = ui
j(0) = δij (52) 

Where   δij  is the Kronecker delta symbol. 

After introducing the new expressions of the variables  ui(z) in the system (49), we will obtain the following equations:   

d  

dz
ui

j(z) = ailul
j(z) ;   1 ≤ i, l, j ≤ 8  (53) 

For each value of j , we must solve a set of eight first order ordinary differential equations which are subjected to the 

initial conditions (52) , by approaching the variables ui
j(z) with real power series defined in the interval [0,1] and truncated at 

the order  N ,  such that: 
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ui
j(z) = ∑ dp

i ,j
zp

p=N

p=0

 (54) 

A linear combination of the solutions ui
j(z) satisfying the boundary conditions (42), (43) or (44) and (45) at z = 1 leads to a 

homogeneous algebraic system for the coefficients of the combination. A necessary condition for the existence of nontrivial 
solution is the vanishing of the determinant which can be formally written as: 

f(Ra, a, Q , NB , Le , RN, NA , ε , Da) (55) 

If we give to each control parameter (Q, NB , Le , RN, NA , ε , Da)  its value, we can plot the neutral curve of the stationary 
convection by the numerical research of the smallest real positive value of the thermal Rayleigh number Ra which 
corresponds to a fixed wave number a and verifies the dispersion relation (55). After that, we will find a set of points (a, Ra) 
which help us to plot our curve and find the critical value (ac, Rac) characterizing the onset of the convective stationary 
instability, this critical value represents the minimum value of the obtained curve. 

2.4 VALIDATION OF THE METHOD  

The main aim of our study consists to study the influence of a uniform magnetic field on the stationary stability of an 
electrically conducting nanofluid  in a Darcy-Brinkman porous medium for different cases of boundary conditions: free-free, 
rigid-free and rigid-rigid cases, our study shows that the thermal stability of this type of nanofluids depends on seven 
parameters : Q , NB, Le , RN, NA , ε and Da . 

The truncation order N  which corresponds to the convergence of our method is determined, when the four digits after 
the comma of the critical thermal Rayleigh number Rac remain unchanged.To validate our method, we compared our results 
with those obtained by Dhananjay Yadav et al. [22] concerning the effect of a vertical magnetic field on the onset of 
convective instability in a non-porous medium for an electrically conducting nanofluid. To make this careful comparison, we 
must take in the governing equations the following restrictions:   

σ = ε = Da =
L2

K
= 1 ; K−1 = 0  ;   αm = α  ;  km = k 

Where α and k are the thermal diffusivity and the thermal conductivity of the nanofluid respectively in a non-porous 
medium. 

Table 1.   The comparison of critical values of Rayleigh number and the corresponding wave number with Dhananjay Yadav et 
al. [22] for a nanofluid (water+Al2O3) characterized by NB = 0.00075, Le = 5000 , RN = 0.1 and NA = 5 for different values of the 

magnetic Chandrasekhar number Q 

Q 

free - free case (N=40) rigid - rigid case (N=55)  rigid - free case (N=50) 

D. Yadav  Present study D. Yadav  Present study D. Yadav  Present study 

ac Rac ac Rac ac Rac ac Rac ac Rac ac Rac 

0 2.221 157.011 2.2214 157.0113 3.136 1207.262 3.1163 1207.2617 2.682 600.151 2.6823 600.1496 

100 3.701 2153.208 3.7015 2153.2081 4.012 3256.731 4.0120 3256.7301 3.850 2649.057 3.8500 2649.0587 

200 4.210 3757.994 4.2102 3757.9944 4.446 4988.042 4.4458 4988.0332 4.325 4324.817 4.3245 4324.8160 

 

According to the above results, we notice that there is a very good agreement between our results and the previous 
works, hence the accuracy of the used method. The convergence of the results depends greatly on the truncation order N of 
the power series, of the type of boundary conditions and also of the values of the of the magnetic Chandrasekhar number Q , 
such that for the large values of the magnetic Chandrasekhar number Q, it’s necessary to use the greater values of the 
truncation order N. Finally, to ensure the accuracy of our obtained critical values for the studied nanofluids, we will take as 
truncation order: N = 40  for the free-free case, N = 55  for the rigid-rigid case and N = 50  for the rigid-free case, these 
values are taken when we want to vary the value of the magnetic Chandrasekhar number  Q  from 0 to 200.  
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3 RESULTS AND  DISCUSSION  

To study the effect of a parameter (Q, NB , Le , RN, NA , ε , Da) on the onset of the convective instability of an electrically 
conducting nanofluid in a  Darcy-Brinkman porous medium with a uniform vertical magnetic field  , we must  fix the others 
and determine the variation of the critical thermal Rayleigh number Rac  as a function of the magnetic Chandrasekhar 
number  Q  for different values of this parameter . For this purpose, we will consider a reference nanofluid characterised by  
NB = 0.01 , Le = 100   , RN = 0.1 , NA = 1 , ε = 0.9  , Da = 0.5 and then plot the variations of the critical thermal Rayleigh 
number Rac with the magnetic Chandrasekhar number Q  in the interval [0,100] for different values of: 

- The modified particle-density increment  NB ( Fig.2 and Table 2)  in the case where : 

ε = 0.9  , Da = 0.5  , Le = 100  , RN = 0.1  , NA = 1 

- The Lewis number  Le  ( Fig.3 and Table 3)  in the case where : 

ε = 0.9  , Da = 0.5 , RN = 0.1  , NA = 1,NB = 0.01 

- The concentration Rayleigh number RN ( Fig.4 and Table 4 ) in the case where  : 

ε = 0.9  , Da = 0.5 , Le = 100  , NA = 1 , NB = 0.01 

- The modified diffusivity ratio NA (see Fig.5 and Table 5)  in the case where : 

ε = 0.9  , Da = 0.5    , Le = 100  , RN = 0.1 , NB = 0.01 

- The porosity value  ε  ( Fig.6 and Table 6 )  in the case where : 

Da = 0.5 , Le = 100  , RN = 0.1 , NA = 1 , NB = 0.01 

- The Darcy number Da ( Fig.7 and Table 7 ) in the case where : 

ε = 0.9  , Le = 100  , RN = 0.1 , NA = 1 ,NB = 0.01 

 

Fig. 2. The variation of 𝑹𝒂𝒄 as a function of 𝑸 for different values of  𝑵𝑩 
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Fig. 3. The variation of 𝑹𝒂𝒄 as a function of 𝑸 for different values of  𝑳𝒆 

 
 

                                                            Fig.4.   The variation of 𝑹𝒂𝒄 as a function of 𝑸 for different values of  𝑹𝑵 . 
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                                                            Fig.5.   The variation of 𝑹𝒂𝒄 as a function of 𝑸 for different values of  𝑵𝑨 . 

 

                           Fig.6.   The variation of 𝑹𝒂𝒄 as a function of 𝑸 for different values of  𝜺 . 
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                                                               Fig.7.   The variation of 𝑹𝒂𝒄 as a function of 𝑸 for different values of  𝑫𝒂 . 
 

Table 2.   The stationary instability threshold of the electrically conducting nanofluids for different values of 𝑵𝑩 and 𝑸  in the case 
 where:  𝜺 = 𝟎. 𝟗 ,𝑫𝒂 = 𝟎. 𝟓 , 𝑳𝒆 = 𝟏𝟎𝟎 , 𝑹𝑵 = 𝟎. 𝟏  and  𝑵𝑨 = 𝟏  

NB Q 
free - free case (N=40) 

 

rigid - rigid case (N=55) 

 

rigid - free case (N=50) 

ac Rac ac Rac ac Rac 

10−4 

0 2.2893 361.5107 3.1239 887.0988 2.7118 583.4400 

5 2.6183 491.2072 3.2672 1005.6524 2.9326 709.4096 

15 3.0094 711.9971 3.4935 1226.8423 3.2391 934.4530 

35 3.4611 1094.0147 3.8167 1630.2779 3.6304 1332.1294 

75 3.9743 1768.3653 4.2379 2356.3024 4.1014 2036.8022 

100 4.1929 2160.9464 4.4285 2779.3810 4.3072 2446.1118 

10−3 

0 2.2893 361.5107 

 

3.1239 887.0988 

 

2.7118 583.4400 

5 2.6183 491.2072 3.2672 1005.6524 2.9326 709.4096 

15 3.0094 711.9971 3.4935 1226.8423 3.2391 934.4530 

35 3.4611 1094.0147 3.8167 1630.2779 3.6304 1332.1294 

75 3.9743 1768.3654 4.2379 2356.3024 4.1014 2036.8022 

100 4.1929 2160.9464 4.4285 2779.3810 4.3072 2446.1118 

10−2 

0 2.2893 361.5107 

 

3.1239 887.0988 

 

2.7118 583.4401 

5 2.6183 491.2073 3.2672 1005.6525 2.9326 709.4096 

15 3.0094 711.9972 3.4935 1226.8424 3.2391 934.4531 

35 3.4611 1094.0148 3.8167 1630.2780 3.6304 1332.1295 

75 3.9743 1768.3655 4.2379 2356.3026 4.1014 2036.8024 

100 4.1929 2160.9465 4.4285 2779.3812 4.3072 2446.1120 
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Table 3.   The stationary instability threshold of the electrically conducting nanofluids for different values of 𝑳𝒆 and 𝑸  in the 
case where: 𝜺 = 𝟎. 𝟗 ,𝑫𝒂 = 𝟎. 𝟓 ,   𝑹𝑵 = 𝟎. 𝟏 ,𝑵𝑨 = 𝟏  and 𝑵𝑩 = 𝟎. 𝟎𝟏 

Le  Q 
free - free case (N=40) 

 

rigid - rigid case (N=55) 

 

rigid - free case (N=50) 

ac Rac ac Rac ac Rac 

100 

0 2.2893 361.5107 3.1239 887.0988 2.7118 583.4401 

5 2.6183 491.2073 3.2672 1005.6525 2.9326 709.4096 

15 3.0094 711.9972 3.4935 1226.8424 3.2391 934.4531 

35 3.4611 1094.0148 3.8167 1630.2780 3.6304 1332.1295 

75 3.9743 1768.3655 4.2379 2356.3026 4.1014 2036.8024 

100 4.1929 2160.9465 4.4285 2779.3812 4.3072 2446.1120 

600 

0 2.2893 305.9552 

 

3.1239 831.5433 

 

2.7118 527.8845 

5 2.6183 435.6517 3.2672 950.0969 2.9326 653.8541 

15 3.0094 656.4416 3.4935 1171.2868 3.2391 878.8975 

35 3.4611 1038.4592 3.8167 1574.7225 3.6304 1276.5740 

75 3.9743 1712.8099 4.2379 2300.7470 4.1014 1981.2468 

100 4.1929 2105.3910 4.4285 2723.8257 4.3072 2390.5564 

1200 

0 2.2893 239.2885 

 

3.1239 764.8766 

 

2.7118 461.2178 

5 2.6183 368.9850 3.2672 883.4303 2.9326 587.1874 

15 3.0094 589.7749 3.4935 1104.6201 3.2391 812.2309 

35 3.4611 971.7926 3.8167 1508.0558 3.6304 1209.9073 

75 3.9743 1646.1432 4.2379 2234.0803 4.1014 1914.5801 

100 4.1929 2038.7243 4.4285 2657.1590 4.3072 2323.8898 

Table 4.   The stationary instability threshold of the electrically conducting nanofluids for different values of 𝑹𝑵 and 𝑸  in the 
case where:  𝜺 = 𝟎. 𝟗 ,𝑫𝒂 = 𝟎. 𝟓 ,   𝑳𝒆 = 𝟏𝟎𝟎 ,𝑵𝑨 = 𝟏  and 𝑵𝑩 = 𝟎.𝟎𝟏 

RN Q 
free - free case (N=40) 

 

rigid - rigid case (N=55) 

 

rigid - free case (N=50) 

ac Rac ac Rac ac Rac 

0.1 

0 2.2893 361.5107 3.1239 887.0988 2.7118 583.4401 

5 2.6183 491.2073 3.2672 1005.6525 2.9326 709.4096 

15 3.0094 711.9972 3.4935 1226.8424 3.2391 934.4531 

35 3.4611 1094.0148 3.8167 1630.2780 3.6304 1332.1295 

75 3.9743 1768.3655 4.2379 2356.3026 4.1014 2036.8024 

100 4.1929 2160.9465 4.4285 2779.3812 4.3072 2446.1120 

0.4 

0 2.2893 327.8774 

 

3.1239 853.4655 

 

2.7118 549.8067 

5 2.6183 457.5739 3.2672 972.0192 2.9326 675.7763 

15 3.0094 678.3638 3.4935 1193.2090 3.2391 900.8198 

35 3.4611 1060.3815 3.8167 1596.6447 3.6304 1298.4962 

75 3.9743 1734.7321 4.2379 2322.6692 4.1014 2003.1690 

100 4.1929 2127.3132 4.4285 2745.7479 4.3072 2412.4787 

0.7 

0 2.2893 294.2440 

 

3.1239 819.8322 

 

2.7118 516.1734 

5 2.6183 423.9406 3.2672 938.3858 2.9326 642.1430 

15 3.0094 644.7305 3.4935 1159.5757 3.2391 867.1864 

35 3.4611 1026.7481 3.8167 1563.0113 3.6304 1264.8628 

75 3.9743 1701.0988 4.2379 2289.0359 4.1014 1969.5357 

100 4.1929 2093.6798 4.4285 2712.1146 4.3072 2378.8453 
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Table 5.   The stationary instability threshold of the electrically conducting nanofluids for different values of 𝑵𝑨 and 𝑸  in the 
case where: 𝜺 = 𝟎. 𝟗 ,𝑫𝒂 = 𝟎. 𝟓 ,   𝑳𝒆 = 𝟏𝟎𝟎 , 𝑹𝑵 = 𝟎. 𝟏  and 𝑵𝑩 = 𝟎. 𝟎𝟏 

NA Q 
free - free case (N=40) 

 

rigid - rigid case (N=55) 

 

rigid - free case (N=50) 

ac Rac ac Rac ac Rac 

1 

0 2.2893 361.5107 3.1239 887.0988 2.7118 583.4401 

5 2.6183 491.2073 3.2672 1005.6525 2.9326 709.4096 

15 3.0094 711.9972 3.4935 1226.8424 3.2391 934.4531 

35 3.4611 1094.0148 3.8167 1630.2780 3.6304 1332.1295 

75 3.9743 1768.3655 4.2379 2356.3026 4.1014 2036.8024 

100 4.1929 2160.9465 4.4285 2779.3812 4.3072 2446.1120 

20 

0 2.2893 359.6106 

 

3.1239 885.1987 

 

2.7118 581.5400 

5 2.6183 489.3072 3.2672 1003.7523 2.9326 707.5095 

15 3.0094 710.0971 3.4935 1224.9422 3.2391 932.5530 

35 3.4611 1092.1146 3.8167 1628.3778 3.6304 1330.2293 

75 3.9743 1766.4653 4.2379 2354.4023 4.1014 2034.9021 

100 4.1929 2159.0463 4.4285 2777.4810 4.3072 2444.2118 

40 

0 2.2893 357.6106 

 

3.1239 883.1986 

 

2.7118 579.5399 

5 2.6183 487.3071 3.2672 1001.7522 2.9326 705.5094 

15 3.0094 708.0970 3.4935 1222.9421 3.2391 930.5529 

35 3.4611 1090.1145 3.8167 1626.3777 3.6304 1328.2292 

75 3.9743 1764.4651 4.2379 2352.4021 4.1014 2032.9020 

100 4.1929 2157.0461 4.4285 2775.4808 4.3072 2442.2116 

 

Table 6.   The stationary instability threshold of the electrically conducting nanofluids for different values of 𝜺 and 𝑸  in the case 
where: 𝑫𝒂 = 𝟎. 𝟓 ,   𝑳𝒆 = 𝟏𝟎𝟎 , 𝑹𝑵 = 𝟎.𝟏 , 𝑵𝑨 = 𝟏  and 𝑵𝑩 = 𝟎. 𝟎𝟏 

ε Q 
free - free case (N=40) 

 

rigid - rigid case (N=55) 

 

rigid - free case (N=50) 

ac Rac ac Rac ac Rac 

0.05 

0 2.2893 172.6233 3.1239 698.2227 2.7118 394.5567 

5 2.6183 302.3223 3.2672 816.7795 2.9326 520.5294 

15 3.0094 523.1176 3.4935 1037.9752 3.2391 745.5788 

35 3.4611 905.1452 3.8167 1441.4211 3.6304 1143.2655 

75 3.9743 1579.5120 4.2379 2167.4621 4.1015 1847.9548 

100 4.1929 1972.1014 4.4285 2590.5494 4.3073 2257.2730 

0.1 

0 2.2893 272.6227 

 

3.1239 798.2141 

 

2.7118 494.5533 

5 2.6183 402.3201 3.2672 916.7686 2.9326 620.5238 

15 3.0094 623.1116 3.4935 1137.9600 3.2391 845.5689 

35 3.4611 1005.1318 3.8167 1541.3982 3.6304 1243.2479 

75 3.9743 1679.4865 4.2379 2267.4268 4.1015 1947.9248 

100 4.1929 2072.0696 4.4285 2690.5076 4.3072 2357.2366 

0.9 

0 2.2893 361.5107 

 

3.1239 887.0988 

 

2.7118 583.4401 

5 2.6183 491.2073 3.2672 1005.6525 2.9326 709.4096 

15 3.0094 711.9972 3.4935 1226.8424 3.2391 934.4531 

35 3.4611 1094.0148 3.8167 1630.2780 3.6304 1332.1295 

75 3.9743 1768.3655 4.2379 2356.3026 4.1014 2036.8024 

100 4.1929 2160.9465 4.4285 2779.3812 4.3072 2446.1120 
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Table 7.   The stationary instability threshold of the electrically conducting nanofluids for different values of 𝑫𝒂 and 𝑸  in the 

case where:  𝜺 = 𝟎. 𝟗,   𝑳𝒆 = 𝟏𝟎𝟎 , 𝑹𝑵 = 𝟎. 𝟏 ,𝑵𝑨 = 𝟏  and 𝑵𝑩 = 𝟎. 𝟎𝟏 

Da  Q 
free - free case (N=40) 

 

rigid - rigid case (N=55) 

 

rigid - free case (N=50) 

ac Rac ac Rac ac Rac 

0.4 

0 2.3043 295.6620 3.1258 716.3130 2.7187 473.3403 

5 2.6860 422.5605 3.2994 834.0015 2.9813 597.5983 

15 3.1160 636.0007 3.5628 1051.1000 3.3278 816.5975 

35 3.5986 1004.7450 3.9240 1443.5761 3.7540 1201.2681 

75 4.1385 1657.6441 4.3801 2147.1298 4.2556 1882.9004 

100 4.3672 2038.8425 4.5835 2557.1099 4.4726 2279.5743 

0.5 

0 2.2893 361.5107 

 

3.1239 887.0988 

 

2.7118 583.4401 

5 2.6183 491.2073 3.2672 1005.6525 2.9326 709.4096 

15 3.0094 711.9972 3.4935 1226.8424 3.2391 934.4531 

35 3.4611 1094.0148 3.8167 1630.2780 3.6304 1332.1295 

75 3.9743 1768.3655 4.2379 2356.3026 4.1014 2036.8024 

100 4.1929 2160.9465 4.4285 2779.3812 4.3072 2446.1120 

0.8 

0 2.2654 558.9203 

 

3.1211 1399.4421 

 

2.7012 913.6890 

5 2.4994 693.7725 3.2151 1519.3996 2.8509 1042.5909 

15 2.8101 929.9498 3.3747 1747.8561 3.0799 1279.2903 

35 3.1952 1341.9855 3.6219 2172.8140 3.3974 1704.6499 

75 3.6506 2066.8283 3.9684 2947.0324 3.8025 2461.6903 

100 3.8480 2486.5888 4.1314 3399.5032 3.9842 2900.5272 

 

Generally the variation in the critical thermal Rayleigh number Rac with the magnetic Chandrasekhar number Q  is an 

increasing function whatever the value taken for the parameters NB , Le , RN , NA , ε  and Da , so the presence of the Lorentz  

forces allows us to reduce the effect of buoyancy forces, hence the magnetic Chandrasekhar number Q has a stabilizing 

effect.The above figures and tables confirm that the presence of friction on the horizontal walls is a factor producing the 

thermal stability of the system, such that:  

Rac
rr > Rac

rf > Rac
ff  

Whatever the type of boundary conditions (free-free, rigid-free and rigid-rigid cases), we find graphically from Fig.2 and 

its corresponding table (Table 2)  that there is no effect of the modified particle-density increment NB on the convective 

instability for the nanofluids, this result may be explained by its low value (NB~10−4 − 10−2) which appears only in the 

perturbed energy equation (29) as a product with the inverse of the Lewis number (Le~102 − 103) near the temperature 

gradient and the volume fraction gradient of nanoparticles, so the effect of this parameter on the onset of convection in the 

nanofluids will be very small. Hence, the contribution of Brownian motion and thermophoresis in the thermal energy 

equation (9) can be neglected. Rather, the Brownian motion and the thermophoresis of nanoparticles directly enter in the 

equation (10) expressing the conservation of nanoparticles.  

From Fig.3 and its corresponding table (Table 3), we conclude that an increase in the Lewis number Le allows us to 

accelerate the onset of convection, hence this parameter has a destabilizing effect .Therefore, to ensure the stability of the 

system, we can use the nanofluids which are having a less thermal diffusivity. 

 From the expression of the concentration Rayleigh number RN we can conclude that the use of nanoparticles which are 

having a small density or a low concentration allows us to stabilize the nanofluids (Fig.4 and Table 4). In this investigation, we 

find that an increase in the volume fraction of nanoparticles destabilizes the nanofluids, because an increase in this 

parameter, increases also the Brownian motion and the thermophoresis of nanoparticles, which cause the destabilizing 

effect. This result confirms that the regular fluids are more stable than the nanofluids. 
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From  Fig. 5 we find graphically that there is no effect of the modified diffusivity ratio NA on the convective instability for 

the nanofluids. If we make a quantitative analysis of its corresponding table (Table 5), we find that an increase in the 

modified diffusivity ratio NA allows us to decrease somewhat the critical thermal Rayleigh number Rac , this result can be 

explained by the increase in the buoyancy forces which destabilizes the system.  

From Fig.6 and its corresponding table (Table 6), we find that an increase in the value of the porosity  

ε  allows us to increase also the critical thermal Rayleigh number Rac , hence this parameter has a stabilizing effect, such that 

it delays the onset of convection in the porous mediums saturated by the nanofluids, this result indicates that the space 

occupied by the nanofluids in the porous medium has an important role on the thermal stability. 

From Fig.7  and its corresponding table (Table 7), we find that an increase in the in the Darcy number Da allows us to 

delay the onset of convection, this result indicates that the permeability of the porous medium  K has a stabilizing effect , 

such that the nanofluids will be more stable in the non-porous  mediums than in the porous ones. 

4 CONCLUSIONS 

In this paper, we have examined the effect of a uniform vertical magnetic field on the onset of Darcy-Brinkman 

convection in an electrically conducting nanofluid saturated a porous layer heated uniformly from below and cooled from 

above for free-free, rigid-rigid and rigid-free boundaries in the case where the volumetric fraction of the nanoparticles at the 

top wall is considered as greater than that of the bottom. The contribution of the Brownian motion and the thermophoresis 

of nanoparticles in the equation expressing the buoyancy effect coupled with the conservation of nanoparticles has a major 

effect on the onset of convection compared with their contributions in the thermal energy equation such that we can 

considered the Brownian motion and the thermophoresis of nanoparticles in the equation (9) have a second-order effect on 

the onset of convection. 

The resulting eigenvalue problem is solved analytically and numerically using the power series method. The behavior of 

various parameters like the magnetic Chandrasekhar number Q, the modified particle-density increment NB , the Lewis 

number Le , the concentration Rayleigh number RN, the modified diffusivity ratio NA , the porosity  ε  and the Darcy number 

Da on the onset of convection has been analysed in this study.  

The principal results can be summarized as follows: 

- The presence of the Lorentz forces allows us to stabilize the electrically conducting nanofluids, such that an increase 

in the magnetic Chandrasekhar number Q  induces also an increase in the critical thermal Rayleigh number Rac. 

- The presence of friction on the horizontal walls is a factor producing the thermal stability of the system, where the 

rigid-rigid case is the more stable case compared with the rigid-free and free-free cases , such that: 

Rac
rr > Rac

rf > Rac
ff  

- To ensure the stability of the system, we can use the nanofluids which are having a less thermal diffusivity, a low 

concentration of nanoparticles or consisting of  less dense nanoparticles. 

- An increase in the volume fraction of nanoparticles, in the buoyancy forces, in the Brownian motion or in the 

thermophoresis of nanoparticles allows us to destabilize the nanofluids. 

- The regular fluids are more stable than the nanofluids. 

- An increase either in the porosity ε  or in the permeability of the porous medium K allows us to increase  the critical 

thermal Rayleigh number Rac. Hence, they have a stabilizing effect. 

- The nanofluids are more stable in the non-porous mediums than in the porous ones. 

- The used method to solve the magneto-convection problem in a Darcy-Brinkman porous medium gives more 

accurate results, because the  absolute error of  the obtained critical values which characterize the onset of 

convection is of the order of 10-5, Hence, we can used our results as a reference to validate other results of the 

similar problems . 
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NOMENCLATURE 

Symbols : 

ax
∗  Wave number in x∗ direction (m−1) 

ay
∗  Wave number in y∗ direction (m−1) 

ac
∗  Critical wave number (m−1) 

DB Brownian diffusion coefficient (m2 s⁄ ) 

DT Thermophoretic diffusion coefficient (m2 s⁄ ) 

Da Darcy number 

g⃗  Gravity field  (m s2⁄ ) 

H⃗⃗ 0 Vertical magnetic field (T) 

H⃗⃗ ∗ Magnetic field (T) 

K Permeability of the porous medium 

km Effective thermal conductivity of Nanofluid   (W K.m⁄ ) 

L Layer depth (m) 

Le Lewis number 

n∗ Growth rate of disturbances (s−1) 

NA Modified diffusivity ratio 

NB Modified particle-density increment 

P∗ Pressure (Pa) 

Pr Prandtl number 

Prm Magnetic Prandtl number 

Q Chandrasekhar number 

Ra Thermal Rayleigh  number 

Rac Critical Rayleigh  number 

RM Density Rayleigh number 

RN Concentration Rayleigh number 

V⃗⃗ ∗ Velocity vector (m s⁄ ) 

T∗ Temperature (K) 

t∗ Time  (s) 

u∗, v∗, w∗ Velocity components (m s⁄ ) 

Va Vadasz number 

x∗, y∗, z∗ Cartesian coordinates (m) 

Greek symbols : 

αm Effective thermal diffusivity of  nanofluid (m2 s⁄ ) 

β Thermal expansion coefficient of base fluid   (K−1) 

ε Porosity of the medium 

η Resistivity of  nanofluid  (Ω.m) 

μ Viscosity of nanofluid (Pa. s) 

μ̃ Effective viscosity  of  nanofluid (Pa. s) 

μe Magnetic permeability (N A2⁄ ) 

ρ0 Fluid density at reference temperature(kg m3⁄ ) 

(ρc)f Heat capacity of base fluid (J m3. K⁄ ) 

(ρc)m Effective heat capacity of  nanofluid (J m3. K⁄ ) 

(ρc)p Heat capacity of  nanoparticles  (J m3. K⁄ ) 

χ∗ Volume fraction of nanoparticles  
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Superscripts : 

∗ Dimensional variable 

′ Perturbation variable 

ff Free - Free case 

rf Rigid - Free case 

rr Rigid - Rigid case  

Subscripts : 

c Cold 

h Hot 

ac Critical  number 

b Basic solution  

f Base fluid 

p Nanoparticle 
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