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ABSTRACT: In this paper we decompose the realized volatility of the GARCH-RV model into continuous sample path variation 

and discontinuous jump variation to provide a practical and robust framework for non- parametrically measuring the jump 

component in asset return volatility. By using 5-minute high-frequency data of MASI Index in Morocco for the period (January 

15, 2010 - January 29, 2016), we estimate parameters of the constructed GARCH and EGARCH-type models (namely, GARCH, 

GARCH-RV, GARCH-CJ, EGARCH, EGARCH-RV, and EGARCH-CJ) and evaluate their predictive power to forecast future 

volatility.  The results show that the realized volatility and the continuous sample path variation have certain predictive 

power for future volatility while the discontinuous jump variation contains relatively less information for forecasting 

volatility. More interestingly, the findings show that the GARCH-CJ-type models have stronger predictive power for future 

volatility than the other two types of models. These results have a major contribution in financial practices such as financial 

derivatives pricing, capital asset pricing, and risk measures. 

KEYWORDS: GARCH-CJ, Jumps variation, Realized volatility, MASI Index, Morocco. 

1 INTRODUCTION 

A common finding in much of the empirical finance literature is that asset returns volatility exhibits “clustering” and 

“persistence” features. This is why [1] proposed the AutoRegressive Conditional heteroskedasticity (ARCH) model which was 

generalized later by [2] to take into account bigger regression order and proposed the GARCH model. [3] found that the asset 

volatility is “asymmetric” relatively to bad and good news on the market, then he modified the GARCH model and built an 

exponential GARCH model (EGARCH). These models (GARCH and EGARCH) were found to be more powerful in predicting 

future volatility [4]. 

Despite the fact that GARCH style models have been continuously proved to be stronger for predicting asset returns 

volatility, seeking to improve the accuracy of future volatility prediction is an endless process and constitutes the premise of 

quantitative financial analysis. This is because measuring and predicting accurately the asset returns volatility has too much 

practical uses in financial asset pricing, financial derivative pricing, and financial risk management. 

In order to enhance the accuracy of volatility forecasting, [5] introduced the realized volatility (RV) as an exogenous 

variable into the volatility equation of GARCH model. They built a GARCHRV model and found that it has stronger predictive 

power than the traditional GARCH model. The same results were found by [6] and [7]. 

However, in realistic financial markets, the process of asset volatility is not completely continuous but contains some 

jump components. In fact, [8] and [9] studied the HAR-type RV model and found that model built with continuous sample 
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path variation and discontinuous jump variation that decomposed from RV has stronger power than the undecomposed HAR-

RV model in measuring and predicting the asset volatility. 

Based on these findings, we estimate that it makes sense to split the exogenous variable RV introduced in GARCH-RV 

model into a continuous sample path variation and discontinuous jumps variation in order to further enhance the predictive 

power of GARCH-RV model. Similarly, in this paper we will also extend the EGARCH model to an EGARCH-RV model and an 

EGARCH-CJ model. Next, we estimate parameters of the above-mentioned models and evaluate their forecasting power for 

the future volatility to identify which volatility model has stronger power for the asset volatility measurement and prediction. 

This by using the 5-minute high-frequency data of the broad based Moroccan All Shares Index for a 5 years period ranging 

from January 15, 2010 to January 29, 2016. 

The remaining of this paper is as follows, Section 2. discusses the construction of the GARCH-CJ-type models, Section 3. 

presents the empirical results of parameters estimation and predictive power evaluation, and Section 4. serves to conclude. 

2 MODEL SPECIFICATION 

2.1 GARCH-CJ MODEL BUILDING 

2.1.1 GARCH-RV MODEL CONSTRUCTION 

Stock return volatility cannot be directly observable but can be measured in the asset return series. Financial literature 

shows that return volatility is “clustering” and “persistent” over time. [1] proposed the AutoRegressive Conditional 

heteroskedasticity (ARCH) model that captures the clustering feature and [2] generalized it to take into account bigger 

regression order and proposed the GARCH model. Scholars generally use the GARCH(1,1) model described by: 

�� 	= ln � �	
�	
�� = ���|Ψ���� + ��        

 

�� 	= σ� ⋅ 	 �� 			,				�� ∼ ψ�0,1, υ�           (1) 

 

σ� = ω + α	ϵ��� + β	σ���   

%� is the price of the index at time & and Ψ��� contains all information up to day & − 1. �� are the random innovations 

(surprises) with �&� = 0 and they are split into a white noise disturbance �� and a time-dependent standard deviation σ� 
characterizing the typical size of the error terms.  ψ�. � marks a conditional density function and υ denotes a vector of 

parameters needed to specify the probability distribution of ��. σ� is the volatility and  ω , α, and β are parameters to be 

estimated. 

Seeking to improve the explanatory and the predictive power of the traditional GARCH model, [5] incorporated the 

Realized Volatility (RV) as an exogenous variable into the volatility model GARCH(1,1) and built the GARCH-RV model 

expressed as follows: 

 

�� = 	E���|*���� + �� 						, �� = +� ⋅ 	�� ,      

 

+� = , + -	���� + .	+��� + /	01��� .          (2) 

 

λ is a parameter to be estimated as for ω , α, and β, and RV��� is the realized volatility at time & − 1. [10] and [5] 

emphasized the importance of using high-frequency intraday returns to the measuring and forecasting of volatility and 

expressed the realized volatility as a function of overnight return variance. 

 

01� = ∑ ��,6 768� + ��,9 = ∑ ��,: ;:8� 			 , < = = + 1 .        (3) 

    

By assuming = equally divided parts of a trading day, ��,� represents the log-return for the first period (part) of the day 

where ��,� = ln�%�,� %�,>⁄ � and %�,� is the opening price at Day &, ��, 	 is the log-return for the second period; ..., and ��,7 

expresses the N
th

 return at Day &. Finally, ��,9 = ��,; =	 ln�%�,� %���,@⁄ � where %���,@  is the closing price in Day & − 1. 
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2.1.2 GARCH-CJ MODEL CONSTRUCTION 

There is empirical evidence that stock markets exhibit fractal features and financial asset price volatility is not continuous 

but rather generated by a jump process. The nonlinear properties of the stock market volatility is almost due to big 

information shocks and investors’ irrational behaviors. Therein, in order to improve the predictive power of the GARCH-RV 

model, [8] decomposed the realized volatility (01) in model (2) into a continuous sample path variation denoted A:  and a 

discontinuous jump variation B�. 
Alternatively, [11] introduced the Realized Bipower Variation (0C1) with more robustness properties described by: 

0C1�DE,FG =	 H�I;�
���EJF�  ⁄ K ∑ |�:,�|E;��:8� |�:J�,�|F,					�, L ≥ 0       (4) 

Where � and L are constants
1
, ℎ is a fix time interval and < is the sample frequency within interval ℎ. [11] demonstrated 

that when a stochastic volatility and an infrequent jumps process exist, then the difference between RV and RBV estimates 

the quadratic variation of the jump component B� when < → ∞. 

01� − 0C1� 			;→QRSST B� .            (5) 

Given a limited sample size, the jumps variation B� calculated in (5) may not be always positive and to overcome this issue, 

we treat B� in the following way: 

B� = 	MaxD01� − 0C1� 	, 0G .           (6) 

When calculating the discontinuous jumps variation B� a problem of accuracy occurs for an intraday data sampled at 

unequal frequency. This is why [11] introduced a U� statistic to test for B�. U� is described by: 

U� = (VW	�VXW	)	VW	
�
YMaxZ�,V[\	/VXW	̂ _(� ;⁄ )Z(`  ⁄ )J`�a_ 	→ 	=(0,1)        (7) 

Where: 

0bc� = <de f⁄�f � ;;�e�∑ |��,:�e|e f⁄;:8e |��,:� |e f⁄ |��,:|e f⁄ ,        (8) 

gde f⁄ = EZ|U�|e f⁄ _ = 2î	Γ �kl� Γ �� ���m.	  
0bc� is the Realized Tripower Quarticity which is an asymptotically unbiased estimator of integrated quarticity in the 

absence of microstructure noise. 

The calculation of 0C1� relies mainly on the sampling frequency of intraday data which might result in some convergence 

issues when the sampling frequency is sufficiently high. This is due to several factors and one of these is the market 

microstructure. [12] introduced the Median Realized Volatility (Med01�) as a robust estimator for B� instead of the biased 01�. The alternative Med01� uses two-sided truncation, picking the median of three adjacent absolute returns and is 

expressed by (9). Similarly, 0bc�  used for U� calculation in (7) is replaced by Med0bc�  described hereafter by (10). 

Med01� = `l�e√fJ` � ;;� � × ∑ Med;��68 Zs��,6��s, s��,6s, s��,6J�s_        (9) 

Med0bc� = f`;t`Jk �a √f � ;;� � × ∑ Med;��68 Zs��,6��s, s��,6s, s��,6J�s_e                        (10) 

By replacing 01�  and 0bc� in (7) with Med01� and Med0bc�  respectively, we calculate the U�statistic and get the 

estimator for both discontinuous jump variation B� and continuous sample path variation A� at 1 − - significance level. In this 

paper, based on previous research, we choose a confidence level of 99%. B� and A� are then defined as: 

B� = 	%(U� > vw)(01� −Med01�),                       (11) 

A� = %(U� ≤ vw)01� 	+ 	%(U� > vw)Med01� .                      (12) 

                                                                 

 

 

1
 Usually �	 = 	L	 = 	1 is given so that 0C1�D�,�G = ∑ |�:,�|E;��:8� |�:J�,�|F 
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Finally, according to the above 01� decomposition into A� and B�, the GARCH-RV model in (2) becomes the GARCH-CJ 

model expressed as follows: 

�� = 	E(��|*���� + �� 						, �� = +� ⋅ 	�� ,      

+� = , + -	���� + .	+��� + /	A��� + yB��� .                      (13) 

2.2 EGARCH-CJ MODEL SPECIFICATION 

In response to the weakness of traditional GARCH model to capture all the leptokurtosis of the error terms and to handle 

the asymmetric responses of volatility, [3] constructed the Exponential GARCH (EGARCH) model on the basis of the baseline 

GARCH model. Most commonly, researchers use the EGARCH(1,1) model described by: 

�� = 	E���|*���� + �� 						, �� = +� ⋅ 	�� , 
z{ +� = , + -	�|����| − D|����|G� + . z{�+��� � + |	���� .                    (14) 

Following the method discussed in Section 2.1.1, we get the EGARCH-RV model by introducing the log of the one-period-

lagged realized volatility (01���). Thus, equation (14) becomes: 

z{ +� = , + -	�|����| − D|����|G� + . z{�+��� � + |	���� + / ln�01����.                 (15) 

 

We split 01��� into A��� and B���, we take their logarithms and replace them in (15), thus we obtain the EGARCH-CJ 

model described as follows: 

 

�� = 	E���|*���� + �� 						, �� = +� ⋅ 	�� , 
 

z{ +� = , + -�|����| − D|����|G� + . z{�+��� � + |	���� + / ln�A���� + y ln�B��� + 1�.                (16) 

3 EMPIRICAL RESULTS AND COMPARATIVE ANALYSIS OF MODELS’ PREDICTIVE POWER 

3.1 DATA AND EMPIRICAL PROPERTIES 

3.1.1 SAMPLE STATISTICS 

Our data set is the Moroccan All Shares Index (MASI), recorded at 5 minutes (5-min) intervals during the sample period of 

January 15, 2010 to January 29, 2016. Data is sourced from Bloomberg® data services. The Casablanca Stock Exchange opens 

at 9:30 (GMT) and the first record of the MASI index for that day is registered at 9:31. The market closes at 15:30 (GMT) and 

the last record of the day is registered at 15:31. Therefore, considering a 5-min intervals during one trading day and by using 

the moving average interpolation for missed data we obtain 144 daily index records. Overall, our sample period consists of 

1,506 days. We eliminated weekends and holidays during which the market was closed. 
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(A) MASI Index level (B) 5-min returns (log difference, in percent) (C) 5-min volatility (absolute return, in percent). Sample 

period is January 15, 2010 - January 29, 2016 (216,864 5-mins, 1,506 days). Data source: Bloomberg® 

Fig. 1. Moroccan All Shares Index (MASI) at 5-min intervals 

Table-1 below presents descriptive statistics of all variables needed to estimate the GARCH-type models described before, 

i.e. intraday returns ��,6, Realized Volatility 01�, continuous sample path variation A� and discontinuous jump variation B�, and 

their respective logarithms: ln(01�), ln(A�) and ln(B� � 1). 

Table 1. Summary Statistics of Study’s Variables 

 Mean Std. dev. Skewness Kurtosis Jarque-Bera ADF t-statistic 

}~,� -0.0129 0.6003 0.0815 5.655 444.09
***

 -34.064
***

 

��~ 1.1639 1.5647 -4.9915 37.873 10615.02
***

 -18.125
***

 

�~ 0.8523 1.1063 -5.1326 60.345 19221.69
***

 -11.934
***

 

�~ 0.3116 1.1170 -9.6719 91.238 42360.17
***

 -22.872
***

 

�����~� 0.3594 0.3681 -0.5231 3.152 121.65
***

 -5.166
***

 

����~� 0.2967 0.2390 -0.3266 2.791 95.95
***

 -5.710
***

 

����~ � �� 0.1199 0.2476 -3.4885 13.478 1592.14
***

 -21.246
***

 

Notes: (***) denotes significance at 1% level of significance. 

We can clearly observe from Table-1 that returns ��,6  and realized volatility 01� are not normally distributed. These are 

fat-tailed which implies that volatility in Moroccan stock market is high. Furthermore, the ADF t-statistics are all significant at 

99% level of confidence; we can easily reject the null hypothesis of unit root existence in the series. This allows us to use the 

variables for further models analysis and estimation of parameters. 

3.1.2 ESTIMATION OF MODELS’ PARAMETERS AND COMPARISON 

The method of estimation adopted in this paper is maximum likelihood, and parameters of the six competing models 

(GARCH, GARCH-RV, GARCH-CJ, EGARCH, EGARCH-RV and EGARCH-CJ) were estimated under two assumptions for errors 

distribution, i.e. the normal distribution and Student-t distribution. Goodness of fit is compared using the log-likelihood, 

Akaike Information Criterion (AIC) and Schwarz Information Criterion (SIC). 
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From Table-2 below, by comparing log-likelihood and information criterion AIC and SIC, we can see that the EGARCH-type 

models (i.e. EGARCH, EGARCH-RV and EGARCH-CJ) outperform the GARCH-type models (i.e. GARCH, GARCH-RV and GARCH-

CJ) in terms of goodness of fit of the data. This means that volatility on the stock market has an asymmetric response 

relatively to bad news and good news. Furthermore, both of GARCH-type models and EGARCH-type models fit better the 

data when residuals are assumed to be following a Student-t distribution. 

Table 2. Log-likelihood, AIC and SIC for GARCH-type Models and EGARCH-type Models 

 Gaussian distribution Student-t distribution 

 LL AIC SIC LL AIC SIC d.f. 

GARCH(1,1) -1288.76 1.715 1.726 -1245.90 1.659 1.674 5.935
***

 

GARCH-RV -1262.13 1.729 1.732 -1236.18 1.693 1.711 6.344
***

 

GARCH-CJ -1238.56 1.753 1.754 -1225.44 1.745 1.737 7.119
***

 

EGARCH(1,1) -1288.49 1.716 1.730 -1245.54 1.660 1.678 5.926
***

 

EGARCH-RV -1259.28 1.732 1.733 -1223.66 1.695 1.701 6.845
***

 

EGARCH-CJ -1254.75 1.754 1.762 -1219.25 1.711 1.712 6.731
***

 

Note: LL is the log-likelihood score. d.f. are degrees of freedom of t-distribution and are all significant at 1% level of significance (***). LL, 

AIC and SIC were calculated using 5-min returns of the MASI Index for the period covering January 15, 2010 to January 29, 2016. 

 

Tables-3 bellow shows that coefficients (/) of newly added exogenous variables 01� and ln(01�)	are all significantly 

positive at 1% or 5% level of significance. This indicates that volatility in Moroccan stock market exhibits pronounced 

persistence and last period volatility may affect current period volatility; this result is consistent with [5]. As for the newly 

GARCH-CJ and EGARCH-CJ models, the coefficients (/) for A� are significantly positive at 10% significance level, and the 

coefficients (y) for Jt are non-significant only when the residual errors in the GARCH-CJ model are assumed to follow a 

Student-t distribution, otherwise significant. 

These estimation results indicate that, in the Moroccan stock market, the lagged continuous sample path variation 

contains relatively more information for predicting the current volatility, while the lagged discontinuous jump variation 

contains relatively less information for forecasting. This finding leads us to test for which models has more predictive power 

for future volatility. Also, the leverage effect is negative (negative estimates for |), meaning that the volatility in the stock 

market is more influenced by bad news than good news. 

Table 3. Estimates of Parameters for GARCH-type Models and EGARCH-type Models 

 Normally distributed residuals Student-t distributed residuals 

 GARCH GARCH-RV GARCH-CJ GARCH GARCH-RV GARCH-CJ � 0.0883
***

 0.0786
**

 0.0735
**

 0.0747
***

 0.1892
**

 0.1956
**

 � 0.2355
***

 -0.2968
***

 -0.3341
***

 0.2441
***

 -0.4219
***

 -0.3955
***

 � 0.5273
***

 0.3541
**

 0.3917
***

 0.5655
***

 0.4123
***

 0.3963
**

 �  0.1254
**

 0.1349
**

  0.1784
**

 0.1996
*
 �   0.0533

*
   0.0378 

d.f.    5.935
***

 6.344
***

 7.119
***

 

 EGARCH EGARCH-RV EGARCH-CJ EGARCH EGARCH-RV EGARCH-CJ � -0.5098
***

 0.2514
***

 0.2763
***

 -0.4873
***

 0.3649
***

 0.3821
***

 � 0.3849
***

 -0.4159
***

 -0.4236
***

 0.3906
***

 -0.6144
***

 0.6232
***

 � 0.8031
***

 0.7810
**

 0.7749
***

 0.8260
**

 0.6971
**

 0.6892
*
 � -0.0130 -0.0985 -0.0948 -0.0268 -0.0828 -0.0847

*
 �  0.1365

*
 0.1289

**
  0.1437

*
 0.1510

*
 �   0.0348

*
   0.0458

*
 

d.f.    5.926
***

 6.845
***

 6.731
***

 

Note: d.f. are degrees of freedom of t-distribution and are all significant at 1% level of significance. Models’ parameters are estimated 

using 5-min returns of the MASI Index for the period covering January 15, 2010 to January 29, 2016. ***, **, and * denote significance at 

the 1%, 5%, and 10% significance level respectively. 
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3.2 FORECASTING METHODOLOGY AND EVALUATION CRITERIA 

3.2.1 IN-SAMPLE FORECASTING 

In this paper, we use a loss-function to determine whether the GARCH-CJ-type models have better predictive power than 

GARCH and GARCH-RV-type models. We compare predictive power of these volatility models using four measures, namely, 

Mean Absolute Error (MAE), Heteroskedasticity-adjusted Mean Absolute Error (HMAE), Root Mean Squared Error (RMSE), 

and Heteroskedasticity-adjusted Root Mean Squared Error (HRMSE). In general, the smaller are these four statistics, the 

better is the predictive power of the volatility models. Statistics of MAE, HMAE, RMSE and HRMSE are calculated using 

formulae in (17). This paper follows the works of [5] and [13] who used the realized volatility 01 as a substitute for the 

volatility in Day &. 
<� = � ∑ s+� − +� �s	968� ,                        (20) 

�<� = � ∑ ��	̂ ��	̂��	̂ �	968� ,                                (21) 

0<� = Y� ∑ Z+� − +� �_ 	968� ,                        (22) 

0<� = �� ∑ ��	̂ ��	̂��	̂ � 968� .                        (23) 

Where { denotes the size of the predictive sample, +�  is the real volatility substituted by 01�, and +� �  is the predicted 

volatility. Values of in-sample predictive power indexes for the GARCH-type models and EGARCH-type models are listed in 

Table 4 below. 

Table 4. In-Sample Forecast Evaluation 

 Errors following normal distribution Errors following t-distribution 

 MAE HMAE RMSE HRMSE MAE HMAE RMSE HRMSE 

GARCH(1,1) 3.5981 0.9837 7.1927 1.3671 3.5647 0.9846 7.2239 1.5410 

GARCH-RV 3.5467 0.9216 6.8913 0.9180 3.4988 0.9517 7.2603 1.6131 

GARCH-CJ 3.2830 0.8217 6.9516 0.8692 3.4207 0.8946 7.2554 1.6128 

EGARCH(1,1) 3.5218 0.9610 7.0220 1.2593 3.5158 0.9126 6.9373 1.5416 

EGARCH-RV 3.4894 0.9154 6.8556 1.1346 3.4791 0.8978 6.6210 1.1246 

EGARCH-CJ 3.4412 0.8999 6.8373 1.1299 3.4697 0.8615 6.5431 1.1222 

Notes: Our full sample consists of 216,864 observations (5-min returns) corresponding to 1,506 days from January 15, 2010 to January 29, 

2016. GARCH and EGARCH-type models are estimated over the first 195,264 observations of the full sample, i.e. over the period January 

15, 2010 to June 15, 2015. 

 

Table-4 shows that all values for GARCH-CJ-type models are smaller than that of both GARCH-RV and GARCH type models 

consecutively. This leads us to conclude that in in-sample volatility forecasting, the GARCH-CJ-type models perform better 

than their counterparts and have more predictive power. However, when comparing forecasting power of volatility models 

given normal and student-t distribution for residuals, the findings are mixed and inconclusive regarding which error 

distribution assumption contributes better to boost the predictive power of the models. See that for the same given model of 

the six competing models, the four measures when assuming normal distribution for errors are not all smaller (alternatively, 

higher) than those for a student-t assumption for errors distribution, and judging the predictive power of models relies on 

which measure is used to for the comparison. 

3.2.2 OUT-OF-SAMPLE FORECASTING 

Compared to the in-sample prediction of the models, the results of out-of-sample forecasting are more interesting since 

they have more practical value. As for the in-sample predictive power evaluation, we divided the full sample of 5-min returns 

(216,864 observations, January 15, 2010 - January 29, 2016) into two parts. The first part for models parameters estimation 
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covers the period from January 15, 2010 to June 15, 2015, and the second part used for prediction covers the remaining 150 

days till January 29, 2016. We still use the same loss function to evaluate the predictive power as for in-sample forecasting. 

Table 5 below presents the values for out-of-sample forecasting measures. As in in-sample predictive power evaluation, it 

is found that GARCH-CJ type-models perform better than GARCH-RV and GARCH type-models for predicting future volatility. 

In addition, the EGARCH type-models has smaller measures values than GARCH type-models which supposes that the former 

have more predictive power. More interestingly, the assumption for normal distribution of errors allows the GARCH type-

models to predict better future volatility. This result is not the same for EGARCH type-models where predictive power 

measures are not scattered similarly as for the GARCH type-models, and the predictive power judgment depends also here 

on the measure used for evaluation. 

Table 5. Out-of-Sample Forecast Evaluation 

 Errors following normal distribution Errors following t-distribution 

 MAE HMAE RMSE HRMSE MAE HMAE RMSE HRMSE 

GARCH(1,1) 0.977 0.965 1.210 1.062 0.972 0.958 1.194 1.048 

GARCH-RV 0.971 0.946 1.209 0.988 0.945 0.936 1.183 0.991 

GARCH-CJ 0.965 0.937 1.095 0.967 0.923 0.913 1.001 0.984 

EGARCH(1,1) 1.002 0.966 1.164 1.059 0.973 0.951 1.189 1.005 

EGARCH-RV 0.979 0.954 1.137 0.976 0.939 0.926 1.102 0.975 

EGARCH-CJ 0.958 0.929 0.996 0.946 0.914 0.890 0.978 0.972 

Notes: Our full sample consists of 216,864 observations (5-min returns) corresponding to 1,506 days from January 15, 2010 to January 29, 

2016. GARCH and EGARCH type-models are estimated over the first 195,264 observations of the full sample, i.e. over the period January 

15, 2010 to June 15, 2015 

 

Based on discussions in sections 3.2.1 and 3.2.2, we conclude that among all the competing models, on top of their best 

fitting for intraday returns volatility, the GARCH-CJ-type models perform better when forecasting future volatility. Thus, 

introducing the realized volatility into GARCH model and splitting it into continuous sample path variation (A�) and 

discontinuous jumps variation (B�) enhances the model’s explanatory and predictive powers. 

4 CONCLUDING REMARKS 

In this paper, we constructed a GARCH-CJ type model with continuous sample path variation and discontinuous jump 

variation based on the GARCH-RV model introduced by [5]. In order to test the model’s validity, we performed an empirical 

study using 5-min high-frequency data of the broad based Moroccan All Shares Index (MASI Index) for the period covering 

January 15, 2010 to January 29, 2016. Then we estimated the parameters of the six competing models, namely, GARCH, 

GARCH-RV, GARCH-CJ, EGARCH, EGARCH-RV and EGARCH-CJ. We also evaluated each model’s predictive power using a loss 

function by calculating four measures (MAE, HMAE, RMSE, and HRMSE) in both cases of in-sample and out-of-sample 

forecasting. 

The estimation results show that EGARCH-type models fit better the data meaning that the volatility in the Moroccan 

stock market has asymmetric responses with regard to good news and bad news. Indeed, the leverage effect estimates are 

negative which means that volatility on the Moroccan stock market is more sensitive to bad news than good news. Also, the 

distribution of the MASI’s returns is found to be leptokurtic indicating that volatility is high in the Moroccan stock market. A 

result that is consistent with other findings of studies on emerging financial markets. Further conclusions are drawn from the 

estimation results as follows: 

(1) The GARCH-type models and EGARCH-type models fit better the data when a Student-t distribution is assumed for 

residuals; 

(2) Volatility in the Moroccan stock market exhibits pronounced persistence considering the significant positive estimates for 

introduced realized volatility (RV ); 

(3) The lagged continuous sample path variation contains relatively more information for predicting the current volatility 

than the lagged discontinuous jump variation; 
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(4) According to predictive power of the models, the GARCH-CJ are found to be better than GARCH and GARCH-RV-type 

models for forecasting future volatility. This result was found when performing both in-sample and out-of-sample 

forecasting. 

These findings mean that it makes sense to split the realized volatility in the GARCH-RV model into a continuous sample 

path and discontinuous jumps variations to enhance the models explanatory and predictive power of daily volatility in 

financial practices such as financial derivatives pricing, capital asset pricing, and risk measures. 

Despite the fact that the constructed GARCH-CJ-type models have shown better performance for predicting stock index 

volatility, it is still necessary to improve the accuracy of measuring and predicting volatility with further improvements for the 

GARCH-CJ model in our forthcoming research by introducing more significant exogenous variables that impact volatility. 
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