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ABSTRACT: There are many areas of research related to the empirical analysis of time series which support The Real Business 

Cycle Theory, but researchers have rarely explored the possibility that business cycle fluctuations have a nonlinear aspect 

and that is intrinsically a phenomenon without exogenous chocks. According to the theoretical exception of Keynesian 

endogenous cycle, cyclical movements are not due to the optimal adjustments of erratic displacements compared the 

equilibrium or deviations of working economy or of the impulses caused by external shocks or unpredictable events, but 

rather of vulnerable and fatal instability through which economy is oriented and of how endogenous fluctuations' evolution 

can affect nonlinear dynamics structures of time series. In this study, an econometric examination of the Tunisian industrial 

production cycle would prove the existence of endogenous fluctuations through a Hopf bifurcation if the control parameter 

transition undergoes a change. Also, clarify how bifurcation Theory and endogenous instability can explain how chaos is 

generated endogenously. The aim of our paper is to investigate the potential asymmetric effects of industrial dynamics. As a 

special case, we expand upon other works on this issue, by assessing the effect of structural changing processes in an 

asymmetric transition function on smooth transition autoregressive (STAR) specification that exhibits a limited cycle. But, in 

many given times, a deterministic dynamical system has a chaotic character that can affect predictability. While our study is 

based on recent fields of dynamical economy and econometrics' nonlinear processes, our results would concern of different 

empirical simulations about the endogenous business cycle. Specially, we analyze some aspects of nonlinear dynamics time 

series including chaos by controlling a parameter’s transition in each bifurcation diagram. 

KEYWORDS: Nonlinearity, Simulation, Endogenous cycle, Hopf bifurcation, Chaos, Asymmetric smooth transition, Industrial 

production in Tunisia. 

1 INTRODUCTION 

It is widely recognized that most of the discussions in macroeconomic analysis are based on the assumption of linearity. 

Recently, nonlinear time series theory could be developed and applied for various purposes. Especially, a large part of 

literature in econometrics analysis suggests that predicting the future is one of the fundamental objectives of nonlinear time 

series analysis. In contrast, it has been long recognized that linear prediction’s techniques, such as exponential smoothing 

and the Box-Jenkins methodology can not help to improve contemporary macro-economic analysis. In addition, these 

procedures are not able to estimate only the breaks and structural change in time series, but also to consider the asymmetry 

phenomenon from nonlinear conditional mean models dynamics. This in particular, to describe the pattern of changes in 

various macro-economic aggregates if we desire to explain the irregularity of cyclical fluctuations, to predict the future 

movement of economic activity and to clarify the evolution of dynamic behavior in endogenous economic cycle. Thereby, the 
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problem of characterizing predictive nonlinear time series model is still an open question. This issue is discussed by [2] since a 

long time, who uses threshold autoregressive (TAR) model and smooth transition autoregressive (STAR) model to describe 

the asymmetric effects in endogenous cycle over monetary policy. He makes use of an endogenous business cycle model in 

which cyclical behavior arises from the intrinsic investment-profit instability. At this way, a good specification of the 

asymmetric behavior is crucial in empirical work, especially for reported studies in the statistical modeling writings of 

asymmetric business cycle, we can see [2]. But now, it is largely recognized that business cycle prediction approach mainly 

for regularities hypothesis induced by simple linear relationship. It describes that propagate mechanisms of predictive 

information provided by exogenous shocks are not precise. Accordingly, some known dynamic aspects of traditional 

modeling methods such as the stability and regularity, result from the reason that they are based on linear evidence of 

econometric specifications which is unreliable when the underlying phenomenon generating the data that is considered to 

be non-linear. It is therefore essential to understand how to reproduce the nonlinear dependency behind the data. One 

major advantage of giving more information about nonlinear dynamics is to understand the real data generation process. In 

this way, many economists as [7] confirmed that even in the absence of exogenous stochastic shocks the time series can 

fluctuate inherently in an endogenous deterministic dynamics that can rarely exhibit a chaotic behavior in various situations. 

However, the presence of nonlinear dynamics and the existence of chaotic behavior have many fundamental implications for 

predictive modeling and for the nonlinear time series analysis. For that, ([5], [6]) have indicated that characterization of 

chaos for predictive modeling is known to be a difficult diagnostic problem especially in studies in nonlinear dynamics and 

econometrics. In this context, [19] observed that the ability of nonlinear dynamical tools to detect the possible presence of 

chaos has centered the research effort on fluctuations instability domain which is intensively a strong debate to identify 

whether dynamics in nonlinear time series are endogenous or exogenous. In the same context, [3] show that chaotic 

business cycles can be endogenously generated in a deterministic setting. For this reason, an important development in 

business cycle analysis and the prediction related to endogenous cycle theory tend to explain how the endogenous 

generating realizations with asymmetrical cyclical fluctuations can be used in nonlinear time series prediction analysis. 

Consequently, writings of the contemporary fluctuation analysis in both axes theoretical and empirical researches given in 

([40], [38], [35], [34], [39], [18]) show the importance of considering the hypothesis of nonlinearity in the mean and the 

instability determined from investigation of the model and prediction of the endogenous cycle. So, all combination of search 

strategies, have proved that forecast’s parameters are extremely sensitive to each stability conditions which include 

convergences to equilibrium or an endogenous cycle such as a limit cycle or the chaotic dynamics. On the other hand, the 

dynamic economic science writings are generally more concentrated on the ability of nonlinear dynamical tools to detect, 

characterize, and predict chaos but less concerned with the influence that endogenous fluctuation have a coefficient 

forecasts. However, selected writing on the nonlinear prediction model is largely ignored, as a whole, in economic science 

journals. While many studies derive inferences from previous and more general studies on nonlinear time series, such as 

those focusing on endogenous cycle (see [14], [17]). 

In the fluctuated instable macroeconomic domain, a natural approach to model and forecast economic cycle with 

nonlinear time series considered that observation process’s  is usually assured in the nonlinear dynamic regime in which the 

system oscillate like a limit cycle. But, many deterministic dynamic systems are now known to exhibit chaotic behavior. As a 

result, [22] proposed a theoretical foundations and applications in the social sciences where erratic fluctuations are a 

dominant cause of irregularity of macroeconomic fluctuations. The evidence of chaotic behavior generated from a large 

nonlinear economic deterministic time series can justify the existence of endogenous propagation mechanism of cyclical 

fluctuations resulting from a loss of equilibrium and stable proprieties noted by bifurcation phenomenon [9]. On another 

side, ([42], [30]) have examined that when cyclical movement exposed a strong asymmetry, the complexity of dynamic 

system is explained by fort dependent combination phase (or state) with a smooth progressed function. This smoothness can 

change over the time and indicates any evolution in the dynamics’ structures. Few areas of study can avoid reference to 

combination nonlinear dynamical systems and econometrics for problematic nonlinear time series prediction.  

Recently, a nonlinear dynamic association with this functional mode has considered that the industrial production cycle is 

only a nonlinear and endogenous cycle [25]. Since the Tong’s basic contribution [40], the TAR model has been largely 

developed and experimented [39]. This shift means sequential linear model class defined by party and assured that 

nonlinearity can be determined by a threshold effect which exhibits changing regime process. It is absolutely true that every 

linear sequence in TAR model can contain many points of equilibrium. But the imposed discontinuities in TAR model signify 

that the passage between different regimes can be assured by brutal adjustment. There are of course many notable 

exceptions authorizing a slow passage of one regime to the others by using a STAR model, used notably in order to model 

nonlinear economic cycle; as it is extensively discussed in [37]. In this context, we suggested that a transition of cyclical 

regime is not brutal but it is a smooth transition. For instance, [16] explains that the business cycles phases are frequently 

asymmetric and it can pass slowly from expansion situation to recession and vice-versa, using multiple regime smooth 



Mohsen Alimi and Abdelwaheb Rebai 

 

 

ISSN : 2028-9324 Vol. 16 No. 4, Jun. 2016 849 

 

 

transition autoregressive (MRSTAR) models which are introduced by [15]. However, in STAR class model, the means of 

access between cyclical regimes are usually assured by replacing the indicator function in TAR model by a continuous 

transitional function which changes smoothly from 0 to 1 and it is examined in [35]. These gradual passages between regimes 

induced by utilizing the transitional function and that can generate the adjustment structural process. This is proved in [8] 

and which caused dynamic equilibrium of instability induced by the presence of a phenomena of limit cycle. If the 

endogenous loss of stability of dynamic equilibrium is attended, then dynamic equilibrium passed from local stability to 

general instability. In this situation, according to [21] we suppose that a transition in the model structure can be explained by 

changing in the propriety of stability of a dynamical equilibrium multiplicity. The goal of this paper is to expand upon other 

works and reexamine how changing parameters in equation of transitional function affect the dynamic equilibrium of 

instability which caused a transitional structure model. While the study should prove to be useful in all fields in social science, 

I hope to examine how identification and control of this pure endogenous structure are used for the suppression of instable 

fluctuation that model and forecast a nonlinear time series cycle. Instability and Nonlinearity affect inferences drawn from 

nonlinear dynamic time series models of national endogenous industrial production cycle. Due to similarities of national 

endogenous cycle fluctuation analyses, the results of this study are directly applicable to ten monthly time series analyses of 

national instable industrial sector. So, we think that there is time for structural reform when industry becomes more 

stabilized and more organized. 

The transitional events can be exhibited by a discrete time evolution and can also refer to the change in observable values 

of state dynamic process by the passage of structure. In this deterministic formulation, the concept of time evolution may be 

applicable to fund instability structure principle. Studies such as [23] show that the evolution rule of the dynamical system is 

a deterministic rule which has been developed to characterize the features of future states which results from the current 

state. So, the unit to elaborate nonlinear prediction in the domain of instable structure which is usually used by dynamic 

system for a fundamental task of time series analysis and that mechanist needs to know the law of organized phenomena of 

transition between broken chain data. But nonlinear prediction with this hypothesis is sometimes affected by a deterministic 

chaos; this is mentioned in [13]. In many cases, chaotic behavior has been founded to describe only a subset of phase space 

mechanism. Researchers such as [10] think that it can be more difficult to distinguish between deterministic and stochastic 

processes because deterministic system always evolves in the same way from a given starting point as suggested by [7]. 

However, [41] have examined how the organized deterministic chaos can be illustrated for its predictability. After combining 

the different procedures by using recent empirical methods in both studies of chaos theory and econometric modeling, the 

same kinds of nonlinear time series prediction problems have been attacked. 

This article describes optimal nonlinear time series of prediction models based on theoretic norms to investigate the 

underlying dynamics of various time series, especially industrial time series. The preceding optimal modelings of combinative 

techniques have been employed to select a better prediction model. The purpose of this research is to determine whether 

nonlinear dynamics and econometrics techniques could be used to extend and understand evolution of error propagation 

mechanism. We focus on how economic fluctuation of endogenous cycle affects statistical inference, specifically in regard to 

the repression and dissent of nexus.
 
One other question that endogenous theory of cyclical fluctuations poses is, how do 

errors predictions nest from economics fluctuations and how does errors prediction affect economics fluctuations? That is, 

how does dynamical economic cycle of fluctuation behavior influence future dynamic behavior? Typically, qualitative 

bifurcation technique specifies and estimates dynamic recurrent equations in asymmetric transition function and draws 

inferences from the controlled parameters about the effect of each transition’s behavior on one another. A positive 

coefficient indicates a reciprocal relationship, while a negative coefficient reflects an inverse relationship between state and 

dissident behavior.  Additionally, some researchers perform Granger causality tests to see if one actor’s behavior is better 

predicted by the inclusion of the other actor’s past behavior in the model. 

The paper begins by defining some terms and introducing the problem. Next, we review both the econometrics and 

economics science writings on this topic. Then we move to discuss how discrete nonlinear time series may represent an 

endogenous cycle. In this section, we proposed a chaotic control behavior of state in nonlinear dynamics by simulation using 

a deterministic part in univariate asymmetric smooth transition autoregressive specification. Following that discussion, we 

intend to show that the structure of instability affects both dynamical and statistical inference about analysis. Then, we 

report the findings and evaluate the bifurcation diagram of each parameter's transition control. Finally, we discuss the 

implications in the conclusion. 

2 DATA DESCRIPTION AND TUNISIAN INDUSTRIAL  SITUATION  

Before submitting the manuscript, author(s) should check the following list. The analysis is carried out on the index of 

industrial production (IPI); it is used to represent real economic activity and industrial business cycle situation. The 
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instabilities of Tunisian industrial sector can be explained by a branch of industrial recession. The global economic slowdown 

caused by a slowdown of the production in manufacturing. This framework is applied to ten Tunisian macroeconomic time 

series typically considered in endogenous business cycle theories. A shift of regimes is also integrated into the structural 

model. This monthly aggregate data shown in table (1), are data in which a monthly univariate time series of 180 

observations associated with ten particular variables of industrial production sector from July 2000 to December 2014, the 

categories examined in this paper are as follows: 

Table 1: Description of monthly data time series*  

Series                        Seize                                         Descriptions 

   IPI                           180                    Industrial production index         

Manufacturing Data  

   IAA                    180                    Food processing industries           

   ICCV                 180                    Building materials, ceramic and glass industries  

   IME                   180                     Mechanical and metal works industries 

   IC                       180                    Chemical industries  

   ITH                    180                    Textiles and clothing industries 

   IMD                   180                     Diverse Manufacturing industries                  

   IM                      180                     Manufacturing industries  

Non Manufacturing Data 

   M                        180                     Mines                

   E                         180                     Energetic                            
(*)

 Source: The databases are available at the monthly frequency and accounted for values based 100 at 2000 (started with July 2000 and 

finished on December 2014) in the Monthly Bulletins of Statistic produced by the National Institution of Statistic. All time series were 

transformed into growth rates (annual and monthly).   

 

This table gives more economic significances measuring variable accorded data of time series of industrial production that 

could play any central role in conjectural analysis, especially in the intrinsic dynamics analysis of Tunisian industrial 

endogenous cycle. The results in Figure (1) illustrate that dynamics of all time series of industrial production during the 

period January 2000 to December 2014 are with unstable evolution. 

 

Figure 1: Time series from 2000:01 to 2014:12
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This fundamental remark can be used for deduction of nonlinear and instability of industrial production cycle. So, it's 

logical to prefer a STAR methodology specification to analyze and simulate the Tunisian industrial endogenous cycle. 

3 RECENT THEORETICAL  DEVELOPMENT  FOR ASYMMETRIC ENDOGENOUS CYCLE MODELLING AND PREDICTION 

As an internal economic conflict, scholars are interested in explaining that the cycle which is essentially nonlinear with 

endogenous behavior is whether an exogenous or endogenous cycle. To do so, we base the thesis on two fundamental 

hypotheses such as nonlinearity and inherently the instability of economic structures, which suggests the possible emergence 

of endogenous cyclical fluctuations but, without damaging the economy. The first one presumes the effect of asymmetric 

cyclical fluctuations that exhibits a continuous and dynamic change in its states. To expose dynamic propriety, let's imagine 

the evolution of a dynamic system that can characterize fluctuation movement of endogenous cycle. These evolutions expect 

changing structures that may suppose instability hypothesis.  To join both hypotheses, this has different opinions about how 

to modulate and forecast endogenous cycle characterized by especially dynamic and progressive behavior. In this paradigm 

of the domain of instability, to realize a prediction is the aim of recent theoretical development that intensively do examine 

them in asymmetric endogenous cycle modeling and prediction. When we want to do so, the major difficulty is to defend 

evolution of dynamic predictive information over time. The problem is what can we use to identify dynamic information 

behaviors and recognize with precision the slow evolution that can characterize their future positions? Each precise answer 

needs the choice of a particular trajectory from a larger set of possible forecast trajectories given by a dynamic prediction. 

So, when we want to select a precise dynamic prediction trajectory what practice technique can we pursue?  

Theoretical writings and reports separately study the relationships of deterministic nonlinear dynamics advance and 

stochastic econometrics proceeding between state and space endogenous cycle forecasting behavior. We begin with writing 

that focuses on how to join deterministic and stochastic studies to complete discrete nonlinear forecasting time series of 

Tunisian industrial endogenous cycle. These developments investigated the potential impact of nonlinearity and endogenous 

structures instability witch can raise the possibility of changes in qualitative proprieties of industrial business cycle, [29] have 

examined how the effect of these different causes have became generated by endogenous fluctuation. On the one hand, 

researchers in mobilization in nonlinear dynamics argue that only deterministic treatment imposes costs on statistics 

characteristics of forecasts information. Thus, only deterministic nonlinear dynamics treatments proved to be unable to 

capture many interesting probabilistic previous information. On the other hand, similarly, the probabilistic school which is 

based only on econometric treatment is insufficient because in this case only econometric treatment imposes costs on 

dynamic propriety of forecasts information's. So, if we desire to realize prediction in unstable structure domain, then we 

must respect the time and the space as dependent principles that require the joint of different applied methods.  

For the purposes of this study, we choose to posit a few general hypotheses that come from this writing and that we can 

test using data event. In this situation, we suggest a statistical methodology; we begin by hypothesizing that structural time 

series modeling, which includes endogenous cycles as nested alternatives. Both states respond to one another's dissident 

actions and reactions (i.e., cause or drive one another's behavior). We should see that states respond to dissident behavior 

and that dissidents respond to state behavior. In addition, we should see that states respond to their own past behavior and 

that dissidents respond to their own past behavior.  

Next, we put forth two opposed hypotheses that, again, applicable to both actors. First, we suggest that when one actor 

increases its levels of cooperation, the other actor increases its levels of cooperation (escalation hypothesis). That is, there is 

a positive linear relationship that exists between the two actors’ behavior. Finally, the opposing deterrent hypothesis, 

hypothesizes that an increasing in one actor's cooperative behavior will lead to the other actor's decreasing cooperative 

behavior (i.e., increasing conflict).  

In order to model and predict business cycle behavior, [36] remarked that cyclical fluctuations are usually asymmetric. 

Researchers such as [38] presented discusses the topic of the nonlinearity of business cycle as early as Mitchell's studies since 

1927, and suggested that evidence is both in favor and against the asymmetry of business cycles. So, [16] noted that STAR 

models were originally introduced by [38] are needed to describe the data generating mechanism of inherently asymmetrical 

realization which can endogenously characterize not only cyclical fluctuation, but also changes in their synchronization.  
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4 RESEARCH DESIGN 

4.1 THE  MODEL  

The presence of asymmetries in macroeconomic time series can have two fundamental implications. First, linear and 

Gaussian models are incapable of generating asymmetrical fluctuations cycles. Second, if a nonlinear prediction problem is 

treated as a symmetric linear one, then the estimate of the unpredictable components of time series would contain too 

much information. Infact, if we desire to evaluate predictability of complex behavior produced by asymmetric endogenous 

cycle, we need a large theoretical and empirical complimentary in both nonlinear dynamics and econometrics studies. The 

important questions about endogenously generated cycle remains to be answered using the econometric techniques 

envisaged by calibrated nonlinear models of business cycle and endogenous cycle theories. The purpose of this study is to 

model and analyze by simulation the dynamics of endogenously created oscillations. So, we are paying attention to the 

connection between dynamic propriety and econometric characteristics STAR models which can predict endogenous cycle. 

Let’s start by taking a look at [35], mathematic representation model. If ),1( =∼ pSTARYt  then the associate STAR model is 

given by:  
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Where the continuous transition functions (.)G with parametersγ  and ,c  which changes smoothly from 0),;( =csG t γ  

to ,1),;( =csG t γ  as 1−= tt Ys  increases.  A stationary transition variable ts is endogenous variable see this in [36]. The 

parameter γ  determines the smoothness of the change in the value of the transitional function, and thus the transition from 

one regime to the other is gradual, see [14]. As γ   is large as well as the transition between tow regimes is brutal. So, [24] 

have affirmed that STAR model is linear if the transition variable has a constant value. In this way, [27] considered the 

transition determined by the generalized logistic function ALSTAR which can generate asymmetrical behavior. But, [5] 

extends the exponential transitional function to be asymmetric around the threshold value, hereafter referred as the AESTAR 

model. Recently, the exponential smooth transition autoregressive (AESTAR) model is proposed by ([31], [32]) to examine 

asymmetric nonlinear mean of reversion. A popular asymmetric logistic and exponential transition function are represented 

at table (2), 

Table 2: Some Asymmetric Transition functions  

Logistic and Exponential Asymmetric Transition  Function G(Yt-1) and Parameters 
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(*) ALSTAR: Asymmetric Logistic Smooth Transition Autoregressive;  

(**) AESTAR: Asymmetric Exponential Smooth Transition Autoregressive. 

 

The parameter γ  in ALSTAR function governs the speed of transition. Other than the degree of asymmetric is controlled 

by the parameter .θ  If ,1=θ then a logistic function is earlier symmetric. But, the alternately case may have possible 

asymmetry. On the other hand, as θ  approaches zero, extreme asymmetry is detected. The nature of asymmetry is 
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determined by the sign of parameter .γ  for 0>γ and ,10 << θ a transition starts more slowly than it finishes, while the 

opposite is the case for .0<γ  Figure (2) depicts that asymmetric logistic transition function for the ALSTAR model can be left 

or right introduced through parameter .θ  The parameter γ  in ALSTAR function governs the speed of transition.     

 

The Figure (2) show that asymmetric exponential transition function for the AESTAR model can be left or right introduced 

through parameter .γ  The parameter γ  in AESTAR function governs the speed of transition. Other than the degree of 

asymmetric is controlled by the parameter .λ  

 

Although, the need for a practical forecasting framework of endogenous cycle incorporates a combined nonlinear 

dynamics and econometrics studies under realistic asymmetric loss, thus, we have three related problematic in this work. 

With a variety of definitions being offered, the first fundamental question of what constitutes complex endogenous 

fluctuations is versatile and very complicated theme.  For purposes of this discussion, we focus only on the economic 

dynamic definition of complexity provided and discussed in connection with alternatives by [28].  This definition posits that 

economic systems are dynamically complex if they fail to converge to a point, a limit cycle, or an exponential expansion or 

contraction due to endogenous causes. So, to focus on endogenously created oscillations from the dynamics of smooth 

models, ([2], [42]) have showed that skeleton of smooth transition models can exhibit many types of irregular dynamic 

patterns of some sort, either sudden discontinuities, a periodic chaotic dynamics subject to sensitive dependence on initial 

conditions, multi-stability of basins of attraction, or other such irregular patterns. The skeleton of smooth transition maps 

typically arises as discrete-time models of dynamical systems when the continuous evolution in time is punctuated by 

impacts or discrete switching events that alter the form of the constitutive structures. Examples of such economic systems 

include endogenous cycle. As a control parameter is varied in the asymmetric transition function, the fixed point for the 

Poincaré map of such a system may move in phase space and collide with the border between two smooth regions. When a 

skeleton of smooth transition map crosses a boundary in a state space many bifurcations phenomena have been much 
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studied it. But if nonlinear dynamic generated by skeleton of smooth transition map exhibits a sensitive dependence on initial 

conditions, then model structures could have been changed at the situation dramatically, model predictability is affected as 

the exponential expansion of predictive error. At this situation, uncombined standard techniques forecasts are generally 

unable to capture the loss structures.      

The second fundamental question for forecasting endogenous cycle has been a long practice. While only a few 

economical scientists such as ([7], [1]) examine the effects of temporal accumulation induced by dynamical propriety on 

statistic inferences, many other scholars have explored the impacts of dynamic propriety in other forecasting behavior.  

Finally, we show how optimal control transition under asymmetric loss may be combined with related econometric 

techniques for estimation and forecast accuracy comparison under asymmetric loss to produce a flexible framework for 

forecast model selection. [11] have proposed a new technique for solving forecasting and model selection problems under 

asymmetric loss using piecewise-linear approximations to the loss function and they have established existence and 

uniqueness of the optimal predictor. Below, I review particularly the nonlinear dynamics and econometrics, complimentary 

writings that contribute to the exploration of this issue.     

4.2 RESULTS  

If all noise terms are set to zero in the nonlinear econometric model (1), then we will refer to a special case of 

deterministic nonlinear dynamic (skeleton) denoted by: 

( )1−= tt YfY  

In order to appreciate the dynamic proprieties of the nonlinear stochastic econometric model (1) it is important to 

comprehend the functional law of deterministic nonlinear dynamic skeleton mechanism. Let's start by recognizing the 

dynamic proprieties of asymmetric functions reported on the table (1).   

Dynamically the studies in nonlinear dynamics fluctuation based on deterministic time series models expose the problem 

that dynamic trajectory of unstable endogenous cyclical fluctuation are usually not stationery and can include a dynamic 

behavior like limit cycle. But, for many given time a deterministic dynamical system has a dramatically dynamic like chaotic 

behavior that can affect predictability. In Figures (4-5), we simulate for 130 observations a limit cycle behavior by using 

ALSTAR function (resp.) AESTAR function. 

Figure 4: Limit cycle generated by ALSTAR function  
for N=130, gamma=-2.3, teta=0.4 and c=0.2 
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Figure 5: Limit cycle generated by AESTAR function  
for N=130, gamma = 5.0, lambda = 4.0 and c=0.2 

 

Generally, the fluctuations in limit cycles can characterize second-order bifurcation such as the most importantly 

transitions from a stable to an unstable state ; those usually are detected near the bifurcation point γ =γc, where the structure 

can change its stability, split into new structures with γ being an external control parameter bifurcation and γc is a critical 

value of the control parameter. The bifurcation theory considers a structure of transformation in phase space and indicates 

qualitative changing near equilibrium state of the stability properties of dynamical systems that can characterize dynamical 

endogenous fluctuation. At this point the assimilation of the phase space changes qualitatively in the dynamical system 

which is more important if we desire to understand and control the transition phenomena. Some bifurcations can lead to 

very complicated structures in phase space. Consequently, bifurcations can affect with dynamic chaos the predictability of 

the system. It was in 1972 that Lorenz exposes some conditions of unpredictable behavior: if dynamics exhibit to be highly 

sensitive to initial conditions denoted butterfly effect. At this point, there is explosive growth in error prediction. Figures (6) 

show that dynamic behavior is dependent on control parameter transition γ, a bifurcation diagrams generated by ALSTAR 

function can summarize this. By varying the control parameter transition γ, the following behavior is observed: 

Figure 6: Bifurcation diagram generated by ALSTAR function  

for N=1000, gamma ∈[0, 0.08], theta = 0.5 and c=20.0 

 

First, concerning Figure (6), with 0<γ<0. 0415521, the processes will quickly stabilize on the approximately critical value 

γc=0.0415521, for γ =γc, there is a bifurcation point when it is dramatically slow, less than linear. With γ >γc, the processes may 

oscillate like limit cycle between two values forever. These two values are dependent on the control of parameter transition 
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γ. In figure (7), similarly by varying the control parameter transition γ in AESTAR transition function, we can summarize the 

impact of γ on its transition behavior: 

Figure 7: Bifurcation diagram generated by AESTAR function  

for N=1000, gamma ∈[0, 14], lambda = 4.0 and c=0.2 

 

With 0<γ<5.0993377, the processes will quickly stabilize on the approximately critical value γc=5.0993377, independent 

of the initial values. The rate of convergence is linear, except for a critical value γc when it is dramatically slow, less than 

linear. Withγc<γ<8.6534267 the population may oscillate like limit cycle between two values forever. These two values are 

dependent on control parameter transition γ. For 8.6534267<γ<9.5496689 (approximately), the processes may oscillate 

between four values forever. With 9.5496689<γ<9.7041943 (approximately), the processes will probably oscillate between 8 

values, then 16, 32, etc. The lengths of the parameter intervals; which yield the same number of oscillations decrease rapidly. 

This behavior is an example of a period doubling cascade. At γ approximately 9.7041943 is the onset of chaos, at the end of 

the period-doubling cascade. We can no longer see any oscillations. Slight variations in the initial value yield dramatically to 

different results over time, a prime characteristic of chaos. Most values beyond 9.7041943 exhibit chaotic behavior, but 

there are still certain isolated values of γ that appear to show non-chaotic behavior ; these are sometimes called islands of 

stability. For instance, there is a range of parameters γ which show oscillation between three values, and for slightly higher 

values of γ oscillation between 6 values, then 12 etc. There are other ranges which yield oscillation between 5 values etc.; all 

oscillation periods do occur. 

After proving the effects of transitions, which can be caused by the endogenous instability and make, evidence a possible 

bifurcation on the dynamic behaviors that can show dramatically chaotic situations, if transitions are not controlled. To 

impose control on parameter transition γ, in both ALSTAR and AESTAR transition function, is the first task of selection 

parameter transition based on chaotic reducing, that needed a developing empirical methods for modelling Tunisian 

Industrial Endogenous Cycle. The developed empirical methodology for simulation of the emergence of Hopf bifurcations and 

endogenous fluctuations of nonlinear dynamics time series, based on deterministic chaotic reduction consists to establish 

some econometric algorithm witch providing empirical evidence that endogenously determined cycles using both ALSTAR 

and AESTAR process see Figures (8-9). 
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Figure 8: Limite cycles generated with ALSTAR over time from 2000:01 to 2014:12
alstar_dly(t) = (1+exp(-gamma*(dly(t-1)-c)/teta))^-teta
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Figure 9: Limite cycles generated with AESTAR over time from 2000:01 to 2014:12
aestar_dly(t) = 1-exp((-gamma*(dly(t-1)-c)̂ 2)*(0.5+(1+exp(-lambda*(dly(t-1)-c)))^-1))
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5 CONCLUDING REMARKS   

Our original contribution in this paper is to examine how the modeling and simulation of emergence fluctuation of the 

endogenous structure dynamics in asymmetric smooth transition models can provide a strong evidence 

of endogenous cycles. For that reason, we have discussed how good practice of new piecewise-linear model where 

endogenous business cycle dynamics may be envisaged intrinsically by following a period-doubling process and when the 

dynamics equilibrium exchanges its qualitative properties. This paper tends to focus on nonlinear models of business cycle 

making and exactly to discuss how the cycle does endogenously generated. Our arguments may be summarized in two parts: 

First, it is usually argued that endogenous business cycle dynamics may be related to the appearance and disappearance 

of endogenous fluctuations, to qualitative changes in their amplitude and to complex structure behavior of stable and 

unstable sets of the same saddle cycle. But, to focus on nonlinear models of business cycle fluctuations the dynamics in 

asymmetric smooth models contribute to our understanding of endogenous business cycle dynamics. Our research findings 

are essentially focus on the period doubling bifurcations within the feasible parameter range which are a dominant cause of 

irregularity of inherently macroeconomic fluctuations that can be transformed into erratic fluctuations. 

Secondly, thus contributes to our understanding to business cycle dynamics and how can be triggered via a center 

bifurcation where endogenous business cycle dynamics may be generated. The purpose of this study is to model and analyze 

by simulating the dynamics of endogenously created cycle by bifurcation. 
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