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ABSTRACT: Tunisian policy for road safety is neither clear nor reliable. Each road organism acts on own its side without any 

coordination with other stakeholders and therefore without achieving results. This paper aims to facilitate the decision-making 

process on road safety in Tunisia through the time series analysis of road accidents. The analysis work will allow identifying 

better the respective weight of the factors associated with the road accident frequency. Methodologically, ARIMA (Auto-

Regressive Integrated Moving Average) model is used to meet our above goal. Moreover, the methodology of Box Jenkins 

intervenes as a statistical solution to solve the problem of time series analysis. The results show that the time series of accidents 

are mainly characterized by two different periods in terms of trend. A low decrease in the number of accidents before the 

revolution (2011) (between 2007 and the end of 2010) and the irregular evolution in the rest of the series. Then, models are 

developed in accident cases and ARIMA (0, 1, 2) is identified as the best model. A three-year forecast is made using the best 

model and it shows that the number of road accidents would decrease due to several factors in Tunisia. Consequently, this 

study shows that the temporal analysis of the time series of road accidents can attract the attention of decision-makers to the 

importance of the application of key road safety measures in the short, medium and long term as well as the nature of the 

relationship between the different decision-makers horizons. 
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1 INTRODUCTION 

Road traffic accidents represent a global problem, which has attracted an increasing interest because of its social and 

economic consequences. Worldwide, the number of people killed each year in road accidents is estimated at nearly 1.25 

million, while the number of injured could reach 50 million (World Health Organization, 2015) [1]. In Tunisia, citizens always 

live a dramatic situation. Indeed, with a daily average of more than 21 accidents causing more than 32 injured and over 4 dead 

(National Road Safety Observatory of Tunisia), and with socioeconomic costs, which represent nearly 190 million dollars 

annually (World Health Organization, 2013), it is not surprising that more attention and resources should be devoted by 

decision-makers to this major problem. 

Nowadays, the National Road Safety Council meets once a year to make recommendations and to contribute to one way 

or another in the road safety improvement process. But nothing is done due to a lack of a national policy for road safety. 

Thereafter, each actor acts on his side without any achieving coordination and therefore without real results. The aim of this 

article is to analyze temporally a time series of road accidents and provides a future number of observations in order to form 

a judgment on the current and future situation of road safety and consequently make easier the process of developing a 

national policy. 

In this article, we have applied an ARIMA model proposed by Box and David (1970) to reconstruct the pattern of processes 

subjected to random shocks over time: between two successive observations in a series of measurements concerning the 
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activity of the process, a random event called perturbation affects the temporal pattern of this process and thus modifies the 

values of the observations. To do this, Box and Jenkins' methodology is applied using studio software to construct an ARIMA 

model that best describes the pattern of a time series using the following procedure: identification, estimation, diagnosis and 

prediction. 

In this paper, our first goal is to examine related research studies; secondly, we will present a recent data to use and 

materials. Moreover, we will discuss some models and applied methodologies. Finally, the results are analyzing. 

2 LITERATURE REVIEW 

Progress in road safety is a primary objective for several countries, and as a result, a very high number of scientific works 

are being done just to analyze and improve the state of road safety. On the other hand, these road safety studies are different, 

in terms of the nature of the problem as well as the data used, and the approach followed. Indeed, concerning the temporal 

analysis of accidents, various works are involved; whose time series analysis is the most used approach. 

2.1 RELATED WORKS 

The temporal analysis of road accidents or fatalities is based mainly on time series and easily treated, measurement tools, 

to relate the number of observations, which are evaluated according to road traffic, demand for daily travel, climatic conditions 

and other factors. Indeed, the literature has many works such as (Christens, 2003; Yuan, and al., 2013) which examine the 

factors responsible for the variation of road accidents according to the years. The same for the effects of strategies and the 

economic evolution on the occurrence of accidents and the number of deaths per month, there are also various studies such 

as (Lassarre, 2001; Levine, and al., 1995). The most used type of time series in temporal analysis examines the annual or 

monthly number of accidents and victims in some countries. The objective of the analysis is to describe accident 

phenomenology qualitatively and quantitatively, that one may help us to understand and predict the variation in the road 

safety situation. Researchers are trying to identify a more appropriate technique for analyzing time series. Consequently, it 

becomes possible to have a vision for the future to predict the frequency of accidents (Basic, and al., 2010). 

2.2 THE DYNAMIC UNIVARIATE MODELS 

According to European Commission COST Action 329 (2004), there are two types of much answered dynamic univaried 

models: the structural models by Harvey and the ARIMA models by Box and Jenkins. Concerning the structural models, the 

applications of these models are very diverse in terms of problems and variables. Historically, the first test was made by Harvey 

and Durbins in 1986. It’s showed the consequences of the introduction of the seat belt law in the United Kingdom. The second 

test of this model was used by Ernst and Bruning in 1990 dealing with the seat belt in West Germany. In addition, the diversity 

of scientific works related to the analysis of an explanatory factors influence on the level of road safety where structural models 

of the time series are used. Other applications are distinguished in road safety analysis based on this method by Lassarre (2001), 

Scuffham and Langley (2002), and was applied by Christens (2003), Gould (2005) and Van den Bossche (2006). For the 

second dynamic uni-varied model, ARIMA model shows a case of ARMA model. According to the literature, ARIMA is developed 

by Box and Tiao (1975) and is generally used extensively to model or predict time series data. Looking at applications in road 

safety, many scientific works can be referred to, for example Wagenaar (1984) and Van den Bossche, and others. Moreover, in 

terms of advantages, the approach of this model represents a flexible form for the identification and estimation of the 

parameters for a studied series, and the prediction of future observations. 

2.3 THE FORECAST IN ACCIDENTOLOGY 

About accident prediction, the literature has a variety of works whose used models usually depend on the availability of 

the data and the nature of the problem. Indeed, a separation has been translated in the choice of models that analyze the 

effects of some factors according to observations of accidents and forecasting models of future observations. The use of ARIMA 

model is an example to predict the number of road fatalities in Malaysia between 2015 and 2020 (Rohayu, and al., 2012), the 

same model was used but this time to predict the number of accidents in China (Yuan and al., 2013). 
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3 METHODOLOGY 

3.1 DATA AND MATERIAL 

This study is based mainly on a time series that aims to analyze the evolution of road accidents as a function of time. The 

data used is derived from the National Road Safety Observatory (NRSO) database, which enables to formulate time series of 

road accidents. NRSO is the only responsible source that has a set of time series based on the number of accidents, deaths and 

injuries, plus a set of potential explanatory variables. About data, we have used the monthly history of road accidents which 

extends over 9-years from 2007 to the end of 2015. The choice of this period is mainly related to the availability of data 

proposed by the NRSO. This analysis has been converted into computer language by RStudio software. It is an integrated 

development environment, functional, free and multiplatform, whose programming language is used for statistical analysis. 

3.2 CONCEPTS AND STATIONARITY PROCESS 

The basic notion that intervenes when modeling a time series is that of stationarity. Consequently, it becomes very 

important to study the set of stochastic characteristics of the time series before running statistical tests. So, it is necessary to 

examine the stability of variance and mean of the time series over time. A time series is stationary if there is no systematic 

change in mean (no trend) (1), variances and strictly periodic variations (2) and (3) have been removed. Then, a stationary 

temporal series has no tendency or seasonality the statistical parameters of the series do not change over time. 

Mathematically, a series is said to be stationary if: 

   E (Yt) = constante pour tous t.       (1) 

   Var (Yt) = constante pour tous t.        (2) 

Cov(Yt- Yt+k) = constante pour tous t.      (3) 

On the one hand, if the characteristics of a time series have a change over time, it is assumed to be non-stationary. So, we 

must achieve the stationary by the differentiation process before analyzing or modeling the time series. Consequently, 

the differenced data must be characterized by less variation around the systematic mean of the series compared to the original 

series. Generally, for non-seasonal data, first order differencing operation may be sufficient to attain the stationarity (4). On 

the other hand, other types of the series require order differencing operation (5) or more: 

   � yt+1 = y�+1 - yt          (4) 

   �²yt+2 = � y�+2 – � y�+1 - 2y�+1 + y�       (5) 

3.3 ARIMA (P, D, Q) MODEL 

In the analysis of a time series, mainly two categories of models can be distinguished, the first category assumes that the 

data used are a function of time, whereas the models of the second category estimate the values of data used depending on 

the data values that precede them. The second category then has an ARIMA model (AutoRegressive Integrated Moving 

Average). The ARIMA model has been formalized and popularized by Box and Jenkins in 1976. ARIMA (p, d, q) combines three 

types of temporal processes: The autoregressive process (AR), which considers that each value in a time series can be 

determined by the weighted sum of a set of previous values, with a random error term; The integrated process (I) which 

considers that each value exposes a constant difference with the previous value; The moving average (MA) which considers 

that each value can be determined as a function of the errors related to the previous value, with a more error term. 

For model parameters, "p" is the order of the autoregressive process AR (p), "d" the order of differencing or degree of 

integration process I (d) and "q" the order of Moving average MA (q). In general, the ARIMA model (p, d, q) follows the formula 

below. 

yt = ∑ φi yt-i + ∑ �jℰt-j + µ + ℰt        (6) 

 

Where autoregression coefficient "φ" expresses the strength of the linear connection between two successive values (AR 

(p) refers to as "yt" depends on the "p" previous values), the term "θ" is moving average coefficient multiplied by a past random 

error "ℰ". 

 

p 

i=1 

 

q 

 
j=1 
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3.4 BOX AND JENKINS METHODOLOGY 

In practice, it is very difficult to use equation 6 in the case where the number of lag "p" or "q" is large. Then, Box and Jenkins 

methodology intervenes as a statistical solution to solve the problem of time series analysis. It presents a forecasting method 

which implements knowledge about autocorrelation analysis while testing a set of ARIMA models to identify the appropriate 

model for a time series and to make the forecast. This method has four main stages: model identification, parameter 

estimation, diagnostics checking and forecasting. 

4 ANALYSIS AND RESULTS 

4.1 DESCRIPTIVE ANALYSIS 

According to Fig. 1, the time series plot shows a monthly road accident cases in Tunisia from 2007 to 2015. The time plot 

exhibits a variation in the mean of the series which gives evidence of trend in the time series and consequently the absence of 

stationarity. In general, accident cases are characterized by an incoherent decrease from 2007 to the end of 2010 (December 

2010). In January 2011, a minimal peak of 384 accident cases appeared which was mainly caused by the Tunisian revolution 

(interruption of travel demand). But the number of accidents increases in February 2011 and it remained irregular until the 

end of the time series (The data in the series do not show a seasonal pattern) except in January 2015, a maximum peak of 1233 

accident cases appeared which was mainly due to the exceptional climatic conditions (a cold wave that hit the country) that 

increased risk of accidents. 

 

 

Fig. 1. Time plot of monthly road accident cases in Tunisia from 2007 to 2015 

4.2 STUDY OF STATIONARITY 

Studying stationarity is a fundamental phase before the analysis of the original time series. The existence of a trend requires 

the need to apply differencing to achieve stationarity to stabilize the time series. Fig. 2 shows a first differencing time series 

which was performed to remove trend component and replaced the original time series. Then, a stationarity test (the Dickey-

Fuller test and the increased Dickey-Fuller test) was executed for the differenced time series to detect the existence 

of stationarity. The stationarity test can be exceeded, and a second differencing can be performed. So, an autocorrelation 

function for this last time series differencing treatment should be done allowing to detect any form of non-stationarity or over-

differencing. 
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Fig. 2. First differencing of monthly accident cases in Tunisia 

According to Fig. 3, the autocorrelation function has a negative peak of -0.5 at the first lag (it is a sign of over-differencing). 

Then, there is no need to make a second differencing and consequently the order of differencing "d" is 1. 

 

 

Fig. 3. ACF plots of the second differencing of monthly accident cases in Tunisia 

4.3 MODEL IDENTIFICATION 

After checking stationarity, in this step we have identified the parameters "p" of autoregressive process "AR" and "q" of 

moving average process "MA" necessary to correct the residual autocorrelations. The latter are the correlations of the time 

series according to a Lag (except for the lag autocorrelation 0 which is equal to 1). We used for this step the 

first differencing time series. ARIMA model (p, d, q) identification is based on the autocorrelation function (ACF) test for the 

determination of "p" and the partial autocorrelation function (PACF) for determining "q". In general, if ACF plot of the 

first differencing has only its first terms "q <= 3" and different from zero, we can consider an MA (q). Fig. 4 shows that 

the autocorrelation function (ACF) of the first differencing time series has only two significant negative peaks that exceed the 

error limits. Then, ARIMA model has a moving average process of order 2 or MA (2). 

 

 

Fig. 4. ACF plots of the first differencing of monthly accident cases in Tunisia 
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For the determination of the autoregressive process order "p", if the PACF plot of the first differencing has only its first 

terms "p <= 3" and different from zero, we can consider an AR (p). Fig. 5 shows that the partial autocorrelation function (PACF) 

of the first differencing time series has only two significant negative peaks that exceed the error limits. Then, ARIMA model 

has an autoregressive process of order 2 or AR (2). 

 

 

Fig. 5. PACF plots of the first differencing of monthly accident cases in Tunisia 

As a result, a set of ARIMA models have been proposed: ARIMA (2, 1, 2), ARIMA (2, 1, 0), ARIMA (0, 1, 2).  

4.4 ESTIMATING MODEL PARAMETERS 

This part is intended to estimate the autoregressive parameter (p) and moving average parameter (q), which aims to obtain 

an appropriate model. Then modeling each model separately using RStudio to estimate all models previously proposed. The 

software allows exhibiting a result an estimated values (coefficients) and standard errors of the parameters. Indeed, we can 

provide the approximate values of "t" or "t-values" (the coefficient is divided by the standard error). In cases where the 

approximate value of "t" is not logical, the model that has this illogical parameter estimation should be eliminated without 

completing the other steps of Box and Jenkins methodology. 

Table I shows that most values of "t" are statistically significant, while the value of "t" is insignificant for the coefficient MA 

(1) because it is less than 2. 

Table 1. STATISTICAL INDICATORS OF ARIMA (2, 1, 2) MODEL 

Coefficient Estimation standard deviation Value of "t" 

AR(1) 0,5259 0,0955 5,30 

AR(2) 0,2670 0,0960 2,18 

MA(1) 0,0000 0,0423 0,00 

MA(2) 1,0000 0,0423 23,98 

Akaike information criteria= 1305,34 

 

Table II shows that values of "t" are statistically significant, and they exceed 2. 

Table 2. STATISTICAL INDICATORS OF ARIMA (2, 1, 0) MODEL 

Coefficient Estimation standard deviation Value of "t" 

AR(1) 0,3305 0,0903 5,30 

AR(2) 0,3485 0,0896 2,18 

Akaike information criteria= 1323,33 

 

Table III shows that values of "t" are statistically significant for the ARIMA (0, 1, 2) model. 
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Table 3. STATISTICAL INDICATORS OF ARIMA (0, 1, 2) MODEL 

Coefficient Estimation standard deviation Value of "t" 

MA(1) 0,5558 0,1008 5,51 

MA(2) 0,4442 0,0964 4,61 

Akaike information criteria= 1305,02 

4.5 DIAGNOSTICS CHECKING 

Selecting the most appropriate model should not only provide relatively accurate forecasts. It must contain only statistical 

noise without any regular pattern (residue plot must not expose auto-correlations). Therefore, this step consists mainly of 

plotting the residuals over time to examine the existence of systematic trends (it should be noted the absence of trends), to 

represent the autocorrelation function of residuals to identify any autocorrelation (it should be noted the absence 

of autocorrelation between residuals) and run a normality test (diagram Q - Q). 

The figures above show the diagnostics of the residuals from ARIMA (0, 2, 1). First, the standardized residuals plot (Fig. 6) 

shows no obvious trend and pattern and looks like an independent and identical distribution. Second, in terms 

of autocorrelation, the ACF plot of residuals (Fig. 7) shows no evidence of significant correlation in the residuals. Finally, the 

normality test plot (Fig. 8) shows that most of the residuals are located on the straight line except some few outliers deviating 

from the normality. In conclusion, the model is adequate and fits well. Like the diagnostics checking of ARIMA (0, 1, 2), it is also 

observed that ARIMA (2, 1, 2) and (2, 1, 0) models exposed similar diagnostics characteristics as ARIMA (0, 1, 2) model. 

 

Fig. 6. The normality test plot of ARIMA (0, 1, 2) 

 
Fig. 7. The ACF plot of residuals of ARIMA (0, 1, 2) 
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Fig. 8. The normality test plot of ARIMA (0, 1, 2) 

4.6 SELECTION OF THE MOST APPROPRIATE MODEL FOR FORECASTING ACCIDENT CASES  

Regarding diagnostics checking tests of the previously proposed ARIMA models, the standardized residuals plots (standard 

errors) of models were distributed in an independent and identical manner (irregular variations). In addition, the 

autocorrelation functions (ACF) plots of the residual of all models have shown no correlation. Furthermore, the normality test 

plots were significant for all models. 

From TABLE I, II and III, the values of "t" demonstrate that coefficients of ARIMA (0, 1, 2) and ARIMA (2, 1, 0) models are 

significant except for ARIMA (2, 1, 2) is not significant, the parameters of ARIMA (0, 1, 2) and ARIMA (2, 1, 0) are compared. 

Comparing the Akaike information criteria (AIC) of the models, it is noticed that ARIMA (0, 1, 2) has the minimum AIC and 

residual variance. According to the above discussion, the ARIMA (0, 1, 2) model is the most favorable for forecasting accident 

cases in Tunisia. 

4.7 FORECASTING ACCIDENT CASES IN TUNISIA 

For this study, the forecast presents the final step of the Box and Jenkins methodology. Based on our time series, we could 

use the appropriate model ARIMA (0, 1, 2) to forecast accident cases. Consequently, we could formulate our model by the 

following equation: 

yt = yt - 1 – (�1ℰt - 1 + �2ℰt - 2) + µ + ℰt     (7) 

with, �1 = - 0,5558 and �2 = -0,4442  

Based on equation (7), fig. 9 represents the visual representation of accidents cases from 2007 until the end of 2015 (red 

line). Moreover, based on the adjusted forecasts for the same period, the figure below shows a future road accident cases 

(blue line) with its confidence interval (green area). The aggressive and irresponsible behavior of Tunisian drivers constitutes 

the first major factor in road accidents. According to Fig.9, the road accident cases in Tunisia will represent a surprising decrease 

over the next three years. 

 

 

 

 

 



Temporal Analysis of Road Accidents by ARIMA Model : Case of Tunisia 

 

 

ISSN : 2028-9324 Vol. 24 No. 4, Nov. 2018 1552 
 

 

 

Fig. 9. Graph of the accident cases, its forecast and confidence intervals 

By making the connection with the daily life of Tunisians, this decrease can be explained by several causes such as the 

political and security instability that marks the country nowadays and which makes it possible to slow or even stop the road 

traffic flows. Moreover, the degradation of climatic conditions (snow falls and floods) which affect the country every winter 

and which have a direct effect on the fluidity of traffic flow and the mobility of individuals; in addition to the vehicular 

intensification in urban areas which can slow traffic. 

5 CONCLUSIONS 

In this study, there are two main objectives. The first is the emphasis on the importance of temporal analysis (time series 

analysis) to make the best use of the data collected by the NRSO. The second is the implementation of effective road safety 

policy against accidents by predicting future road accidents. In scientific research, the time series of road accidents represent 

a very useful data in the road safety analysis. In terms of visualization, these series can be used to display and describe events 

related to road safety and the evolution of accidents or road victims over time. Therefore, the time series analysis related 

to the accidentology has a very important place in the decision-making process to improve the level of road safety. Concerning 

the results of our study, we can conclude from the descriptive analysis of the time series of road accident data in Tunisia over 

9 years from 2007 to the end of 2015, that accidents show a small decrease before the revolution. But, in general it is 

characterized by an irregular evolution in the rest of the series. After applying the Box and Jenkins methodology, ARIMA (0, 1, 

2) is identified as the most appropriate model to our data. Moreover, the forecast executed by this model shows a decrease in 

the number of accidents in Tunisia for the next three years. Based on our daily lives, the reduction in road accidents can be 

explained generally by an increase in number of strike actions repetitive cold waves, an increase in vehicle fleets which can 

slow the movement of vehicular flow in urban areas. This result can draw attention to the importance of applying key measures 

(time series analysis) to have a clear vision on the exact level of road safety and to improve the prevention strategy, based on 

scientific studies and research. 
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