
International Journal of Innovation and Applied Studies 

ISSN 2028-9324 Vol. 27 No. 3 Oct. 2019, pp. 762-772 

© 2019 Innovative Space of Scientific Research Journals 

http://www.ijias.issr-journals.org/ 

 

Corresponding Author: Jimmy Sornoza Moreira 762 

 

 

Use of messaging patterns in applications that receive massive transactions seen from 

the teaching process 

Jimmy Sornoza Moreira, Christopher Crespo León, Gary Reyes Zambrano, and Roberto José Zurita-Del Pozo 

Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Guayaquil, Ecuador 

 

 

 
Copyright © 2019 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

ABSTRACT: Transaction processing systems (SPT) are the union of software, network equipment, servers, among others, that 

are used to work with large volumes of data. The inadecuated design of an SPT in one of its processes or the malfunction in 

one of its components or elements, it can directly impact the performance of an application and the company operation 

environment or product depending on the system objective, it could cause waste of time in process responses, it could have 

an impact on the total failure of the service. Failure to provide this service properly could cause economic losses in a company 

or organization. 

KEYWORDS: Hardware, software, generators, volumes, transactions, consumer, patterns, pattern, messaging, processing. 

1 INTRODUCTION 

The workflows in operations that a company manages can be long or short in its execution, it depends on the company 

activity and the correlation that is activated by means of messages between one element and another in a process, or when 

resuming a stage in which an entry data is expected. (Microsoft, 2017) 

It is not the same workflow of recharges of massive balances in a telecommunications company than a workflow of balances 

recharge in electronic games, the workflow varies according to: The activity of the company, the objective of the product or 

service and the number of transactions that will be handled in it. 

Software Developers usually evolve with the application of good practices, the acquisition of new knowledge based on 

research or many times with implementation "in house" to solve a specific problem; decades ago they have been based on the 

reuse of codes, orienting their programming to: Objects, creation of classes, functions, procedures, etc.; but there is something 

in particular, the different developers worldwide go through the same problems, even seen from different perspectives are 

often similar, that is, they go through recurring problems and that's how the "Design Patterns" are born. (It-business, 2017) 

A design pattern is the idea of how to solve a problem within a project; that is, it is a design solution to a recurring problem 

in a particular context, so every pattern has a name. (Leiva) 

A pattern must have a good name, an intention -goals and objectives to be achieved- to solve a motivation -problem within 

a project-; Whenever this is applicable, three sections turn out to be the problem to be addressed. 



Jimmy Sornoza Moreira, Christopher Crespo León, Gary Reyes Zambrano, and Roberto José Zurita-Del Pozo 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 763 

 

 

 

Fig. 1. Sections that make up a pattern 

The proposed solution is given by a structure that includes participants, collaborations, an implementation that considers 

possible variations, code that demonstrates how it is used, related patterns, consequences. 

A development team can make use of "n" design patterns to deal with different specific problems found in any part of a 

system; that is, through the use of patterns we can save time to design or improve a project done "in house", this fact allows 

to use that time in other tasks or actions that contribute to development, such as increasing standards of quality in the task 

performed. 

This use of patterns should be applied according to the size of the problem, making an analogy with real life, it is not the 

same to walk to the store that is 5 homes away than go by motorcycle to the same store, the amount of time that it takes to 

turn on this vehicle can be the same that consumes going on foot and without consuming resources such as fuel, tires, etc. 

MESSAGING PATTERNS 

The fact of applying messaging patterns requires an infrastructure that supports the flexibility of its components, which 

allows to increase the scalability of a process that is part of the software and that makes possible the connection of these 

components. 

Asynchronous messaging is effective at the time of application, likewise, this type of messaging demands that messages be 

interpreted, classified and that their priorities be verified. 

Message patterns resemble service-oriented patterns, there is a difference in the way we think about them. Service-

oriented models can be consumed by many customers. A message-oriented model focuses on the data that flows through the 

system and the set of actions applied to these data under a producer-to-consumer stance. (Microsoft, 2017) 

The following table details different messaging patterns that can be applied to a specific problem. 

Table 1. Messaging Patterns 

Pattern Summary 

Competing Consumers The pattern can be applied, allowing that n consumers can simultaneously process 

the messages received within the same messaging channel. 

Pipes and Filters A complete processing is broken down or distributed into n independent processes 

or elements that can be reused in another process. 

Priority Queue The requests sent to the different services are ordered by priority, the objective is 

that the higher priority has a greater preference for processing than the one with 

low priority. 

Queue-Based Load Leveling Implements a queue that receives transactions or tasks, which can be dispatched 

to a service allowing thus balancing heavy and intermittent loads. 

Scheduler Agent Supervisor Coordinates a set of "n" actions in a set of services that are distributed. 

 

 

Applicable

Motivation

Intent
ion



Use of messaging patterns in applications that receive massive transactions seen from the teaching process 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 764 

 

 

COMPETING CONSUMERS PATTERN 

Also known as competition consumers, this pattern allows several transactions or messages to be processed 

simultaneously, without affecting the performance of a system or process, gaining scalability according to the dynamism of the 

business. (Redhat, 2018) 

An application can trigger several transactions or messages, these can be treated synchronously and asynchronously, the 

described pattern works effectively asynchronously and thus prevents that transactions be blocked while they are processed. 

(Microsoft, 2017) 

The number of requests or transactions triggered by an application or process, may vary depending on the dynamics of the 

business or schedule in which they are executed; likewise, these requests can come from different triggers and not necessarily 

from the same system. 

As an example, you can describe a problem regarding the different types of users that generate transactions in a 

telecommunications company, there a customer can report a theft of their cell phone by calling the call center, this will 

generate a transaction that will block this equipment and simcard on different platforms. 

That same transaction could be triggered by another client who reports the theft of their equipment from a customer 

service center, this could also be through the different channels provided by the company, that is, the number of messages 

generated by a transaction type is inversely proportional to the number of reports for theft generated and according to the 

number of subscribers that the company owns. 

The proposed solution allows to distribute or balance the load according to the number of messages produced by an 

instance of the application, these messages go to a queue where they are provisioned or processed. 

 

 

Fig. 2. Competing Consumers Pattern 

In this way the reliability is improved, since the message produced by a service or application is not sent directly to a 

consumer, if this were the case, it would be necessary to monitor the consumer to confirm the operation and to prevent 

messages from being lost. 

With the use of this pattern, if there is a problem in a consumer instance, the requests or messages will continue queuing 

without affecting the application or process that generates the message. 

PIPES & FILTERS PATTERN 

In this pattern, a complete process is broken down or distributed into n independent processes or elements that can be 

reused in another process. 

Messages Queue 

Message 

Produced 1 

Message 

Produced 2 

Message 

Produced 3 

 

Consumer 

Instance 1 

Consumer 

Instance 2 

Consumer 

Instance 3 



Jimmy Sornoza Moreira, Christopher Crespo León, Gary Reyes Zambrano, and Roberto José Zurita-Del Pozo 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 765 

 

 

 

Fig. 3. Pipes & filters Pattern 

Figure 3 shows by means of a monolithic approach, how problems in data processing are managed. In this case the data is 

received and processed from two sources, an independent module processes the data of each source and performs a 

transformation of them, before the result reaches the business logic of application. 

Monolithic modules perform functionally similar tasks but the design of modules is done separately, the code is coupled in 

a very small way in a module and is developed considering its reuse or scalability slightly. 

Tasks performed in each module or requirements to implement each task, can have a change from the update of business 

requirements. 

Probably there are intensive process tasks that benefit if they are executed with high power hardware, while others do not 

need such high resources but in the future they may require additional processing or order changes in the task. (Iteratrlearning, 

2016) (Microsoft, 2017) 

PRIORITY QUEUE PATTERN 

Requests sent to different services are ordered by priority, the objective is higher priority has a higher processing preference 

than lower priority. (Oscarblancarteblog, 2014) 

This pattern can be explained by making an analogy with a telecommunications company in which a customer owns a 

television service that must pay monthly and that customer falls into default for non-payment, then the company executes a 

process to suspend the service, to once the customer makes the payment online and two transactions fall in line to be 

processed, should the priority between both transactions be the same? 

The priorities are defined by the business according to their specific needs, the pattern in question orders these priorities 

and allows them to be processed accordingly. 



Use of messaging patterns in applications that receive massive transactions seen from the teaching process 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 766 

 

 

 

Fig. 4. Priority Queue 

In case that transactions do not handle priorities, alternatives such as creating multiple queues can be used so that each 

one processes a type of transaction; taking as an example a company that makes massive promotions and that action should 

be taken on each promotion according to the action that a client made, that is, the messages would be queued according to 

the action that client made. 

Use of the mechanism described above provides the following advantages: 

 Transactions are prioritized according to needs of the business. 

 Operating costs of a process can be reduced with use of a queue, if different queues are used the number of 

consumers can be reduced and more control in processing of each one can be had. 

 The handling of different queues can help improve processing time, maximizing performance and scalability of 

application according to the dynamism that a company presents in relation to its products. (Microsoft, 2017) 

QUEUE-BASED LOAD LEVELING PATTERN 

This pattern implements a queue that receives transactions or tasks, which can be dispatched to a service allowing balancing 

heavy and intermittent loads. (Microsoft, 2017) 

Queue to be created must work asynchronously, that is, messages or transactions that pass must be previously deposited 

to be eliminated after transaction be processed. 

The queue may receive several messages or transactions from different media, which produce "n" transactions, which 

means that many producers and consumers will be able to work with it, but each message in the queue is attended only by 

one process. (Amazon, 2018). 

 

 

 

Fig. 5. Message queue with load leveling 

Message Queue 

Produced Message 1 Produced Message 2 Produced Message 3 

 

Consumer Instance 1 Consumer Instance 2 Consumer Instance 3 

 

Requests received at variable 

speed 

 

Messages processed at a more uniform 

speed 



Jimmy Sornoza Moreira, Christopher Crespo León, Gary Reyes Zambrano, and Roberto José Zurita-Del Pozo 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 767 

 

 

This model is useful for any type of service that handles large volumes of information, if application or process has a 

minimum response latency, it would not be possible to use this pattern 

This model provides the following advantages: 

 It increases availability of system, since processing time of different services does not directly affect application; 

Likewise, if there is a problem with consumer, messages triggered from an application or process can continue to 

be stored in queue until affected service be restored. 

 According to demand, structure of the model can be easily adapted to process this transactions, therefore its 

scalability is greater according to the growth of the company. 

 You can manage thresholds to define the level of load for each service instance. 

According to the example previously stated on the generation of transactions for cellular theft in a telecommunications 

company, these messages would be triggered by different channels and then wait for the storage service, it could happen that 

the system is used up and end Wait time for a message therefore the message is lost. 

 

 

Fig. 6. Messages lost due to waiting time 

This pattern is used to solve this problem, since it allows to queue transactions, then process them and dispatch in a 

balanced way to storage service. 

 

 

Fig. 7. Asynchronous queue with messages from different producers 

 

Produced 

Message 1 

Produced 

Message 2 

Produced 

Message 3 

Storage Service 

Message Queue 

Produced 

Message 1 

Produced 

Message 2 

Produced 

Message 3 

 

Consumer 

Instance 1 

Consumer 

Instance 2 

Consumer 

Instance 3 

Storage Service 



Use of messaging patterns in applications that receive massive transactions seen from the teaching process 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 768 

 

 

SCHEDULER AGENT SUPERVISOR PATTERN 

It coordinates different tasks in a distributed manner as a single operation, if an error occurs in one of the tasks, it manages 

the error in a transparent manner as if it were a single process, that is, it manages the error in an integral manner, it tries to 

restore the operation autonomously, if not achieved, repeat the whole operation. (Vasters, 2010) 

If its application generates a workflow involving remote connections, service consumption, etc., there may be problems 

caused in several ways (network failure, unstable remote service, or inactive service) if the application detects that it is a 

permanent error, which is constant or can not be easily recovered, must be able to restore the system in a consistent state and 

ensure the integrity of the entire operation. 

The Scheduler Agent Supervisor pattern defines actors that intervene in the solution of the problem: 

 The Scheduler component organizes a task in steps and organizes its operation, the component is responsible for 

ensuring that each of these steps are executed in an orderly manner ensuring that it does so correctly. As each 

step of the task is executed, the scheduler component marks each execution with a status, that state generates 

three values ("step not yet started", "step in execution" or "step completed") likewise, there is an execution time 

for all the task that will be called "time of validity". If a step requires access to a remote resource or service, 

Scheduler component invokes the appropriate Agent component and transmits work details it must perform. 

 Agent component contains a logic that encapsulates a call to a remote service or access to a remote resource to 

which a specific step of a task refers. 

 Supervisor, is in charge of verifying each state of the component scheduler, if one of them has delays in the 

execution or in the response, calls the Agent component so that it directs the delayed step, this may involve the 

modification of a state of the affected step (Microsoft, 2017) 

Logical components (Scheduler, Agent, supervisor) can be implemented physically but depend on the technology that is 

being used. 

 

Fig. 8. Logic components of Scheduler Agent Supervisor Pattern 

This pattern is used when a process runs distributedly, since it handles operational or communication problems, this pattern 

may not be suitable for tasks that do not invoke or access remote services. 

 



Jimmy Sornoza Moreira, Christopher Crespo León, Gary Reyes Zambrano, and Roberto José Zurita-Del Pozo 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 769 

 

 

2 DISCUSSION 

A solution was developed with JAVA programming language and Oracle as a data repository. The messaging patterns 

described below were applied: Competing Consumers, Pipes & filters, Priority Queue, Queue-Based Load Leveling. 

The solution was applied to a service suspension process due to non-payment, transactions or messages were triggered by 

Collection Management module (MGC) as mentioned above. 

Messages are triggered by the MGC make blockages inside the application to avoid that some other type of transaction be 

made and at the same time they are shot to other platforms that block the service that is provided to the client. 

Next, an analysis will be made regarding time and development of an application to visualize the differences when applying 

the aforementioned patterns. 

Before applying the patterns it was established to shoot an Universe of 106483 messages / transactions that would block 

services and states in different platforms. 

Table 2. Average time in dispatching transactions without patterns. 

DISPATCHERS/DEMONS AMOUNT OF TRANSACTIONS SECONDS MINUTES HOURS 

1 106483 85186,40 1419,77 23,66 

 

According to Table 2, the processing of a universe of 106,483 service blocking transactions on different platforms took 24 

hours. 

To improve processing time in the same type of transaction, messaging patterns were implemented, previously creating a 

queue in which different messages or transactions that block the different platforms will be deposited; The structure of queue 

contains a transaction code or service number, date of the transaction, priority, status and changes made. 

 

 

Fig. 9. Queue Structure 

Transactions that arrive at message queue are prioritized according to the policies established by the business, priorities 

are dealt with according to transaction code, the higher the priority the less the time to be dispatched. 

tx_taken=max(priority) 

Once queue was implemented and according to the priority assigned to each transaction, it was verified that the same 

number of transactions that arrived at said queue with the use of the established pattern be the same as that arrived without 

the application of messaging pattern, it was verified that a universe of 106,483 transactions has arrived in total. 

 



Use of messaging patterns in applications that receive massive transactions seen from the teaching process 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 770 

 

 

 

Fig. 10. Universe of transactions for service suspension 

Once the transactions were deposited in the queue, the attention process managed transactions with an average of 10,500 

messages per daemon, that is, 10 threads were created according to the threshold that was set at most to meet requirements, 

these transactions were deposited by different producers. 

For this practical case of service blocking due to lack of payment, each thread verified the chain and which flag should be 

lit on different platforms. 

 

 

Fig. 11. Processing by thread 

Different producers triggered different messages or transactions to the queue in the course of 00:00 am to 06:00 am, having 

a duration of 6 hours, the messages were deposited to the queue asynchronously. 

 

1, 106483

0

20000

40000

60000

80000

100000

120000

140000

0% 20% 40% 60% 80% 100% 120%

N
u

m
. 

T
ra

n
sa

ct
io

n
s

Tx Global Percentage

Transactions in Queue

Tx totals

10600

10650

10700

0 1 2 3 4 5 6 7 8 9

N
u

m
. 

T
x

0 1 2 3 4 5 6 7 8 9

Total 10654 10656 10650 10659 10654 10647 10644 10631 10634 10654

Processing by Demon



Jimmy Sornoza Moreira, Christopher Crespo León, Gary Reyes Zambrano, and Roberto José Zurita-Del Pozo 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 771 

 

 

 

Fig. 12. Arrival of message / transactions per hour to queue 

Processing of the queue, had an average duration of 2.37 hours as shown in table 3 according to the number of transactions 

that were deposited in queue for different consumers can take the transaction and proceed to block the service on different 

platforms. 

Table 3. Average time in dispatching transactions using queue 

DISPATCHERS / DEMONS AMOUNT OF TRANSACTIONS SECONDS MINUTES HOURS 

0 10654 8523,20 142,05 2,37 

1 10656 8524,80 142,08 2,37 

2 10650 8520,00 142,00 2,37 

3 10659 8527,20 142,12 2,37 

4 10654 8523,20 142,05 2,37 

5 10647 8517,60 141,96 2,37 

6 10644 8515,20 141,92 2,37 

7 10631 8504,80 141,75 2,36 

8 10634 8507,20 141,79 2,36 

9 10654 8523,20 142,05 2,37 

AVERAGE TIME 8518,64 141,98 2,37 

3 CONCLUSION 

In the case of Study presented previously with reference to the blocking of services where the producer (collection module), 

triggers transactions to different platforms to cut the service due to non-payment, it was possible to identify that 100% of 

transactions took almost 23.66 hours to complete the process before implementation of the messaging pattern. 

By implementing the messaging patterns, it was possible to identify that the processing of transactions mentioned above 

was done in 2.37 hours; that is, the processing times fell by 89.98% with reference to the blocking of services. 

This means that the availability of processing services is increased by 89.98% and due to this there are greater opportunities 

to monitor the different services involved in the pattern. 

Because it can measure the time which takes a producer to shot, processing time and consumption time, it can measure 

the efficiency of each member in the pattern and take some action in case of having some inconvenience in one of the actors. 

 In view of the fact that request times and response times can be measured, a more direct approach to a network element 

that can fail to handle large amounts of transactions can be made. 

01 02 03 04 05 06

Total 8058 21873 20933 16954 22570 16095

0

5000

10000

15000

20000

25000
T

x
 l

le
g

a
d

a
s 

a
 l

a
 c

o
la

Transactions in Queue by Hour



Use of messaging patterns in applications that receive massive transactions seen from the teaching process 

 

 

ISSN : 2028-9324 Vol. 27 No. 3, Oct. 2019 772 

 

 

The case study discussed above focused on a type of transaction that has a great impact on a company -even economic-, 

as well as on the management of the different messages that are processed in it; this case could also be extended, for example 

there could be transactions that are directed to the same network elements or platforms with which we worked previously 

and a study could be carried out to analyze if those transactions can reach the queue according to their structure and determine 

whether or not it is necessary to design a new development that modifies the service provided by the different elements of 

the network. 

REFERENCES 

[1] Amazon. (2018). Amazon. Recuperado el 20 de 05 de 2018, de Amazon: https://aws.amazon.com/es/message-queue/ 

[2] It-empresarial. (05 de 12 de 2017). It-empresarial. Recuperado el 30 de 05 de 2018, de It-empresarial: http://www.it-

empresarial.com/index.php/noticias/119-que-son-los-patrones-de-diseno-y-para-que-son-utiles 

[3] Iteratrlearning. (26 de 12 de 2016). Iteratrlearning. Recuperado el 30 de 04 de 2018, de Iteratrlearning: 

http://iteratrlearning.com/java/2016/12/26/pipes-and-filters-actors-akka-java.html 

[4] Leiva, A. (s.f.). devexperto. Recuperado el 30 de 04 de 2018, de devexperto: https://devexperto.com/patrones-de-diseno-

software/ 

[5] Microsoft. (23 de 06 de 2017). Microsoft - Priority Queue. Recuperado el 05 de 06 de 2018, de Microsoft - Priority Queue: 

https://docs.microsoft.com/es-es/azure/architecture/patterns/priority-queue 

[6] Microsoft. (23 de 06 de 2017). Microsoft. Recuperado el 25 de 05 de 2018, de Microsoft: https://docs.microsoft.com/es-

es/azure/architecture/patterns/category/messaging 

[7] Microsoft. (23 de 06 de 2017). Microsoft. Recuperado el 05 de 06 de 2018, de Microsoft: https://docs.microsoft.com/es-

es/azure/architecture/patterns/scheduler-agent-supervisor 

[8] Microsoft. (23 de 06 de 2017). Microsoft. Recuperado el 30 de 04 de 2018, de Microsoft: https://docs.microsoft.com/en-

us/azure/architecture/patterns/pipes-and-filters 

[9] Microsoft. (23 de 06 de 2017). Msdn.microsoft.com. Recuperado el 31 de 05 de 2018, de Msdn.microsoft.com: 

https://docs.microsoft.com/es-es/azure/architecture/patterns/competing-consumers 

[10] Microsoft. (23 de 06 de 2017). Patrón Queue-Based Load Leveling. Recuperado el 25 de 05 de 2018, de Patrón Queue-

Based Load Leveling: https://docs.microsoft.com/es-es/azure/architecture/patterns/priority-queue 

[11] Microsoft. (23 de 06 de 2017). Patrones de mensajería. Recuperado el 22 de 05 de 2018, de 

https://docs.microsoft.com/es-es/azure/architecture/patterns/category/messaging 

[12] Oscarblancarteblog. (01 de 08 de 2014). Oscarblancarteblog. Recuperado el 01 de 06 de 2018, de Oscarblancarteblog: 

https://www.oscarblancarteblog.com/2014/08/01/estructura-de-datos-queue-cola/ 

[13] Redhat. (05 de 06 de 2018). Redhat. Obtenido de Redhat: https://access.redhat.com/documentation/en-

US/Fuse_ESB_Enterprise/7.1/html/Implementing_Enterprise_Integration_Patterns/files/MsgEnd-Competing.html 

[14] Vasters, C. (27 de 09 de 2010). AIRPLANES. CLOUD COMPUTING. AND ALIEN ABDUCTIONS. Recuperado el 05 de 06 de 

2018, de AIRPLANES. CLOUD COMPUTING. AND ALIEN ABDUCTIONS: http://vasters.com/archive/Cloud-Architecture-The-

Scheduler-Agent-Supervisor-Pattern.html 

 


