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ABSTRACT: Since the sixties, debates have been born on the models, which determine the evolution of the stock prices. In this 

work we will focus on one of the best performances in the region of the Middle East and North Africa (MENA), is Africa's third 
largest Bourse: Casablanca Stock Exchange (CSE), which had the “Index de la Bourse des Valeurs de Casablanca” (IGB) as an 
index. IGB was replaced in January 2002 by two indexes: MASI (Moroccan All Shares Index) comprises all listed shares, allows 
investors to follow all listed values and to have a long-term visibility. MADEX (Moroccan Most Active Shares Index) comprises 
most active shares listed continuously with variations closely linked to all the market serves as a reference for the listing of all 
funds invested in shares. 
Firstly, it aims at the investigation of stochastic model to show the variation of MASI index values, and, secondly, we will achieve 
a prediction interval of 95% of chance for Moroccan index future values. Here, the geometric Brownian motion (stochastic 
process without mean reversion propriety) is used to model the stochastic variation of MASI index values. In order to calculate 
models’ parameters daily close values of the Moroccan index from 02/01/2003 to 05/11/2019 can be taken from Casablanca 
Stock Exchange and, hence, stochastic models for MASI index variation is to be derived. 
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1 INTRODUCTION 

Over the last decade, the transparency of the financial markets has become one of the major concerns that have 
characterized the world scene. Theorists and practitioners have been interested in this subject by studying information 
efficiency. 

This article will be devoted to the application of the stochastic modeling to the MASI index (Moroccan All Share Index), the 
overall indicator of the Casablanca Stock Exchange. It should be noted, indeed, that our study period is between 02/01/2003 
and 05/11/2019 with daily data, a period that is crucial in the economic and financial world having most significant events. 

Our contribution is concretized by elaborating a stochastic model of MASI index. To do this, we assume that the MASI 
variation is a stochastic process (random variable time-dependent). 

More concretely, the estimation of the model is carried out by Geometric Brownian Motion (GBM), we must first, give the 
theoretical principles of the GBM, then we elaborate a stochastic model for the MASI index using historical data, and finally, 
building a prediction interval for future values of MASI index. 
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2 THEORETICAL PRINCIPLES OF RESEARCH 

2.1 THE GEOMETRIC BROWNIAN MOTION (GBM) 

The Geometric Brownian Motion (GBM) is a fundamental example of a stochastic process without mean reversion 
properties. The GBM is the underlying process from which is derived to form the Black and Scholes formula for pricing European 
options [1]. Let the exchange rate be assigned as 𝑥𝑡 where ln(𝑥𝑡)obeys the following defined equation. 

𝒅𝒍𝒏(𝒙𝒕) = 𝝁𝒅𝒕 + 𝝈𝒅𝒘𝒕 

Here µ and σ are constants and Wt is a standard Brownian motion. 

2.2 METHODOLOGY 

2.2.1 GEOMETRIC BROWNIAN MOTION. 

Let the continuous-time exchange rate be assigned as 𝑥𝑡 where ln(𝑥𝑡)obeys the following equation: 

𝑑𝑙𝑛(𝑥𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑤𝑡 (1) 

Here, µ and σ are constants and dwt is a standard Brownian motion. In ordinary calculating, one can derive that: 

𝑑𝑙𝑛(𝑥𝑡) =
𝑑𝑥𝑡

𝑥𝑡
 So  

𝑑𝑥𝑡

𝑥𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑤𝑡  

If we adopt Ito’s Lemma as mentioned in J.C. Hull [1], the equation will be as follows: 

𝑑𝑙𝑛(𝑥𝑡) =  (𝜇 −
1

2
𝜎2)𝑑𝑡 + 𝜎𝑑𝑤𝑡  with  𝛾 = 𝜇 −

1

2
𝜎² 

This means that 𝑙𝑛(𝑥𝑡)is an Arithmetic Brownian Motion. By integrating equation between u and t, and according to 
Damiano Brigo et al [4], gives: 

ln(𝑥𝑢) − ln (𝑥𝑡) =  (𝜇 −
1

2
𝜎²)(𝑢 − 𝑡) + 𝜎(𝑤𝑢 − 𝑤𝑡)~𝑁 ((𝜇 −

1

2
𝜎2) (𝑢 − 𝑡);𝜎2(𝑢 − 𝑡)) 

By considering 𝑢 = 𝑇, 𝑡 = 0 and taking the exponent on equation above leads to: 

𝑥𝑇 = 𝑥0𝑒𝑥𝑝 ((𝜇 −
1

2
𝜎2) 𝑇 + 𝜎𝑤𝑇)  (w0=0) 

The mean and the variance of 𝑥𝑇 according to Damiano Brigo et al (2007) [4] are: 

𝐸(𝑥𝑇) = 𝑥0𝑒
𝜇𝑇   And  𝑉𝑎𝑟(𝑥𝑇) = 𝑒2𝜇𝑇𝑥0²(𝑒𝜎²𝑇 − 1) 

Therefore, the version of a simulation equation for the GBM, using the fact that is𝑑𝑊 = 𝑍√∆𝑡[𝟏]: 

ln(𝑥𝑡𝑖+1
) − ln(𝑥𝑡𝑖

) = 𝛾∆𝑡 + 𝜎𝑍𝑖  𝑍𝑖~𝑁(0,1)  and  𝛾 = 𝜇 −
1

2
𝜎² 

By taking the exponent of both sides, it results: 

𝒙𝒕𝒊+𝟏
= 𝒙𝒕𝒊

𝒆𝒙𝒑(𝜸∆𝒕 + 𝝈𝒁𝒊√∆𝒕)𝑍𝑖~𝑁(0,1) 
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2.2.2 MAXIMUM LIKELIHOOD ESTIMATION (MLE) – GEOMETRIC BROWNIAN MOTION 

According to Damiano Brigo et al (2007) [4], the parameters that must be optimized are 𝜃(𝜇, 𝜎)for the GBM. Let the 
logarithmic return be given as: 

𝑦𝑡𝑖
= 𝑙𝑛(𝑥𝑡𝑖

) − ln(𝑥𝑡𝑖−1
) 

Which is normally distributed for all𝑦𝑡1
, 𝑦𝑡2

… … . . 𝑦𝑡𝑛. And these later values assumed independent. The likelihood function 

will be denoted as: 

𝐿(𝜃) = 𝑓𝜃(𝑦𝑡1
, 𝑦𝑡2

… … . . 𝑦𝑡𝑛) = ∏ 𝑓𝜃(𝑦𝑡𝑖
) = ∏𝑓(𝑦𝑡𝑖

|𝜃)

𝑛

𝑖=1

𝑛

𝑖=1

 

Here, 𝑓𝜃 is the probability density function. Let𝜃 = (𝜇, 𝜎), then the probability density function 𝑓𝜃 is: 

𝑓𝜃(𝑦𝑡𝑖
) =

1

𝑥𝑡𝑖
𝜎√2𝜋𝑡

𝑒𝑥𝑝

[
 
 
 
 

−

((
𝑦𝑡𝑖

𝑦𝑡0

) − (𝜇 −
1
2
𝜎²) 𝑡) ²

2𝜎²𝑡

]
 
 
 
 

 

The likelihood function needs to be maximized to obtain the optimal estimators θ̂(μ̂, σ̂). 

First, we have to determineŵandγ̂: 

�̂� = (�̂� −
1

2
�̂�²) ∆𝑡  with  �̂� = ∑

𝑦𝑡𝑖

𝑛
=

ln(𝑥𝑡𝑛)−ln(𝑥𝑡0)

𝑛

𝑛
𝑖=1  

𝛾 = �̂�²∆𝑡  with  𝛾 = ∑
(𝑦𝑡𝑖

−�̂�)²

𝑛

𝑛
𝑖=1  

Then the MLE’s parameters are: 

�̂�² =
�̂�

∆𝑡
  And  �̂� =

1

2
�̂�² +

�̂�

∆𝑡
 

2.2.3 MASI INDEX VARIATION: GEOMETRIC BROWNIAN MOTION. 

In order to calculate �̂�𝑎𝑛𝑑�̂� daily close values of MASI index from 02/01/2003 to 05/11/2019 can be taken directly from 

Casablanca Stock Exchange market. And considering ∆𝑡 =
1

252
 (daily data) 

2.2.3.1 SIMULATION RESULTS. 

Using the daily close MASI index values from 02/01/2003 to 05/11/2019 and Microsoft Excel’s solver, we obtain: 

�̂� = 𝟎, 𝟎𝟖𝟖𝟒𝟏𝟖𝟐𝟐 and  �̂� = 𝟎, 𝟏𝟏𝟕𝟔𝟔𝟒𝟑𝟕𝟏 

The simulation equation for MASI index according to GBM is: 

(∗∗)𝒙𝒕𝒊+𝟏
= 𝒙𝒕𝒊𝒆

(𝟎,𝟎𝟎𝟎𝟎𝟓𝟒𝟗.∆𝒕+𝟎,𝟏𝟏𝟕𝟔𝟔𝟒𝟑𝟕𝟏.𝒁𝒊.√∆𝒕)𝑤𝑖𝑡ℎ𝑍𝑖~𝑁(0,1)         And            ∆𝑡 =
1

252
 

Real MASI index, simulated MASI index and simulation of equation for MASI index according to GBM (with R) model is 
shown in this Figure. With xo=2970,26 [at 02/01/2003]. 
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Fig. 1. MASI index between 02/01/2003 and 05/11/2019 

 

Fig. 2. MASI index estimated values between 02/01/2003 and 05/11/2019 

 

Fig. 3. MASI index Geometric Brownian Motion simulation with R [equation (**)] 

R SCRIPT 

 

2.2.3.2 GBM MODEL, ERROR PERFORMANCES. 

To measure forecast accuracy, we use here the mean absolute percentage error (MAPE) as follow: 

Let be the estimated value MASI index at time ti: 
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The mean absolute percentage error (MAPE) [3]. 

𝑀𝐴𝑃𝐸 =
1

4189
∑

|𝑥𝑡𝑖
− �̂�𝑡𝑖

|

𝑥𝑡𝑖

∗ 100 = 0,8084

4189

𝑖=1

% 

3 PREDICTION INTERVAL OF EXCHANGE RATE VALUES 

First we look at the link between the values predicted by our model (GBM Model) and the real values of the MASI index. 
We note 𝑌 = {𝑦1, 𝑦2 … … . 𝑦𝑛}𝑤ℎ𝑒𝑟𝑒𝑦𝒊 for 𝑖 ∈ {1, …… 𝑛}(with 𝑛 = 4189) the real values of the exchange rate, and 𝑋 =
{𝑥1, 𝑥2 …… . 𝑥𝑛}𝑤ℎ𝑒𝑟𝑒𝑥𝑖  fori ∈ {1, … … n} the predicted values by GBM model. 

To do this, we plot the point cloud and calculate the determination coefficient R². 

The figure below shows a strong linear relationship between Y and X. 

 

According to the figure above, the cloud of point form a straight line, for which we can derive the following equation: 

𝒚 = 𝟏, 𝟎𝟎𝟎𝟐. 𝒙𝒊– 𝟒, 𝟐𝟏𝟗𝟓(*) 

The relationship between the two variables is positive. An increase in the value of x is likely to be related to an increase in 
the value of y which is confirmed by the determination coefficient very close to 1 (R² = 0.9993). 

After having shown that there is a strong linear relationship between X and Y, we will use this result to calculate exchange 
rate values (using linear regression equation) and consequently the prediction intervals of the real values of MASI index. 

We note �̂�𝑖 for 𝑖 ∈ {1, …… . . 𝑛} the values given by equation (*), so we have: 

�̂�𝒊 =𝟏, 𝟎𝟎𝟎𝟐. 𝒙𝒊– 𝟒, 𝟐𝟏𝟗𝟓(*) 

Using this relationship, we can calculate all the values �̂�𝑖  corresponding to𝑥𝑖, for 𝑖 ∈ {1, …… . . 𝑛} 

To find a prediction interval for a future value yn+1 of MASI index we use the following result [4]: 

yn+1 ∈ [ŷn+1 ± tn−2,1−α/2s√1 +
1

n
+

(xn+1 − x̅n)²

∑ (xi − x̅n)²
n
i=1

] 

With: 

• ŷn+1: Value given by least square equation. 

• tn−2,1−α/2: is the (1 −
α

2
) − quantileof the student with n-2 degree of freedom. 
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• s = √
SSR

n−2
: is the root of the sums of squared residuals (SSR) divided by n − 2. 

• n = 4189. 

To deliver results, Microsoft Excel Solver is used as follows: 

• To calculate the ŷi we call function: TREND (). 

• The Excel function LINEST () provide regression parameters. 

• The function T.INV.2T () provide quintiles of Student. 

• The function DEVSQ () calculate the sums of squared residuals. 

RESULTS: 

The Excel function LINEST () provide the flowing regression parameters. 

 

So we can now calculate prediction interval parameters: 

• n = 4189 

• x̅n = 9613,598434 

• ∑ (xi − x̅n)²
n
i=1 :thesumsofsquaredresiduals = 36121346525 

• t0,95 = 1,960530726 

• S = 75,89772638 

A future value 𝑦𝑛+1 of MASI index corresponding to 𝑥𝑛+1have 95% of the chance to be in the following prediction interval: 

𝑦𝑛+1 ∈ [�̂�𝑛+1 ± 1,960530726 × 75,89772638.√1 +
1

4189
+

(𝑥𝑛+1 − 9613,598434)²

36121346525
] 

NOTE: 

The value xn+1 is predicted by GBM model and the corresponding image ŷn+1 is derived by the linear regression 
relationship. 

SIMULATION EXAMPLE: 

This figure shows that the estimated values of the MASI index are between a maximum and a minimum value in 95% of 
cases for three months January, February and March 2019. 
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Fig. 4. The estimated values of the MASI index are between a maximum and a minimum value 

4 CONCLUSION 

This work has focused on stochastic model (GBM model) that is used and calibrated with daily close values of MASI index, 
and as a result elaborating a model with a measure of forecast accuracy (using mean absolute average percentage error 
(MAPE)) for MASI index variation. 

Finally, thanks to the important relationship between the predicted and real values of MASI index, we have achieved a 95% 
prediction interval for future values of the MASI index. 

We note that, the model we have developed gives a better estimate for the values of the MASI index in the very short term. 
To conclude, our work, make available to the market analyzer a forecasting tool in order to anticipate the market trend. 
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