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ABSTRACT: This paper analyses the implementation and calibration of the Heston Stochastic Volatility Model. We first introduce 

the model, provides theoretical motivation for its robustness and hence popularity and explain how characteristic functions 
can be used to estimate option prices. Then we consider the implementation of the Heston model, showing that relatively 
simple solutions can lead to fast and accurate currency option prices. In this work, we perform several tests, using both local 
and global calibration to evaluate the Predictive Accuracy of the Heston Stochastic Volatility Model for currency options. 
Our analyses show that straightforward setups deliver excellent calibration results. All calculations are carried out in MATLAB 
and included in the paper. All the MATLAB’s codes required to implement the model are provided in the appendix A. 

KEYWORDS: Heston Model; Currency option; MATLAB Calibration; Local calibration; Global calibration. 

1 INTRODUCTION 

The Garman-Kohlhagen model has been adopted as the standard model for pricing foreign currency options as it is a 
modification of the famous, Black-Scholes model (1973). However, this method is based on several assumptions that are not 
representative of the real world. In particular, the Garman-Kohlhagen model assumes that volatility is deterministic and 
remains constant through the option’s life, which clearly contradicts the behavior observed in financial markets. During the 
last decades several alternatives have been proposed to improve volatility modelling in the context of derivatives pricing. One 
of such approaches is to model volatility as a stochastic quantity. By introducing uncertainty in the behavior of volatility, the 
evolution of financial assets can be estimated more realistically. In addition, using appropriate parameters, stochastic volatility 
models can be calibrated to reproduce the market prices of liquid options and other derivatives contracts. One of the most 
widely used stochastic volatility models today was proposed by Heston in 1993. In the Heston model, volatility is assumed to 
be stochastic and is defined by a stochastic differential equation. The success of the Heston model is based on the calibration 
of its parameters. 

In this paper we analyze the valuation of foreign currency options using the Heston model. Our aim is to illustrate the use 
of the model, with an emphasis on the implementation and calibration, and to make it a better suited foreign currency option 
pricing model for the FX market using both local and global optimization. First, we introduce the Heston model and discusses 
the implementation of its closed-form solution. Secondly, we introduce bouth local and global calibrations methods and finally, 
we analyze the calibration problem, considering both local and global optimization methods. For all relevant sections, generic 
and ready-to-use MATLAB’s codes have been developed to illustrate the use of the MATLAB routines. 

2 THE HESTON MODEL 

In this paper the main model used in determining the price for a currency option is the Heston model (1993), which assumes 
that the process 𝑺𝒕 follows a lognormal distribution, and the process 𝑽𝒕 follows a Cox-Ingersoll-Ross process (CIR process) 
(1985). The model is given as: 
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𝒅𝑺𝒕 = (𝒓𝒅 − 𝒓𝒇)𝑺𝒕𝒅𝒕 + √𝑽𝒕𝑺𝒕𝒅𝑩𝒕 (𝟐. 𝟏) 

𝒅𝑽𝒕 = 𝜿(𝜽 − 𝑽𝒕)𝒅𝒕 + 𝝈√𝑽𝒕𝒅𝒁𝒕 (𝟐. 𝟐) 

𝑑𝐵𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡 and the variables: 

𝒓𝒅 and 𝒓𝒇 are the domestic and forgein interest rates respectively. 

𝜽 is the long-term mean of variance. 

𝜿 is the rate of mean reversion. 

𝝈 is the volatility of volatility. 

𝑺𝒕 and 𝑽𝑡 are the price and volatility of the process 

𝑩𝒕 and 𝒁𝒕 are correlated Wiener process, and the correlation coefficients is 𝝆. 

The variance of the CIR process is always positive and 𝟐𝜿𝜽 > 𝝈² (feller condition) [4], then it cannot reach zero. It is 
assumed that the interest rate is a constant, hence 𝒓𝒅 and 𝒓𝒇 are fixed values. 

2.1 CLOSED-FORM SOLUTION OF THE HESTON MODEL 

When markets are complete and arbitrage-free, currency option values can be calculated as the present value of their 
expected payoff under the risk-neutral measure: 

𝑬∗[𝑺𝒕 𝑺⁄ ] = 𝑺𝒆 (𝒓𝒅− 𝒓𝒇) 𝒕  Where: 𝑺 =  𝑺𝟎 

Under the equivalent martingale measure, the dynamics of the Heston model equation defined by equations (2.1) and (II.2) 
are given by the following set of stochastic differential equations [6]: 

cite 

𝒅𝑺𝒕 = (𝒓𝒅 − 𝒓𝒇)𝑺𝒕𝒅𝒕 + √𝑽𝒕𝑺𝒕𝒅�̅�𝒕 (𝟐. 𝟑) 

𝒅𝑽𝒕 = 𝜿∗(𝜽∗ − 𝑽𝒕)𝒅𝒕 + 𝝈√𝑽𝒕𝒅�̅�𝒕 (𝟐. 𝟒) 

Where 𝑑�̅�𝑡𝑑�̅�𝑡 = 𝜌𝑑𝑡 

Each stochastic volatility model will have a unique characteristic function that describes the probability density function of 
that model. Heston and Nandi [9] utilize the characteristic function of the Heston model when proposing the following formula 
for the fair value of a currency call option at time t, given a strike price K, that expires at time T: 

𝑪(𝑺, 𝒗, 𝒕) = 𝑺𝒆−𝒓𝒇 𝝉𝑷𝟏 − 𝑲𝒆−𝒓𝒅 𝝉𝑷𝟐 

where 𝜏 = 𝑇 − 𝑡, 𝑃1 and 𝑃2 can be defined via the Fourier Inversion Transformation methodol: 

𝑷𝒋 =
𝟏

𝟐
+

𝟏

𝝅
 ∫ 𝑹𝒆 [

𝒆−𝒊𝝍𝒍𝒏𝑲𝒇𝒋 (𝒙, 𝒗, 𝝉, 𝝍) 

𝒊𝝍
] 

∞

𝟎

𝒅𝝍 

Where j=1,2. And the caracteristic function for the logarithm of exchange rate, 𝑥 = 𝑙𝑛 (𝑆𝑡) is given by [11]: 

𝑓𝑗(𝑥, 𝑣, 𝜏, 𝜓) = 𝑒𝐶(𝜏,𝜙)+𝐷(𝜏,𝜙)𝑣𝑡+𝑖𝜙𝑥  Where: 

𝐶(𝜏, 𝜙) = (𝑟𝑑 − 𝑟𝑓)𝜙𝑖𝜏 +
𝑎

𝜎²
 [(𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑)𝜏 − 2ln  (

1 − 𝑔𝑒𝑑𝜏

1 − 𝑔
)] 
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𝐷(𝜏, 𝜙) =
𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑

𝜎2
 (

1 − 𝑒𝑑𝜏

1 − 𝑔𝑒𝑑𝜏
) 

𝑔 =
𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑

𝑏𝑗 − 𝜌𝜎𝜙𝑖 − 𝑑
 

𝑑 = √(𝜌𝜎𝜙𝑖 − 𝑏𝑗)
2

− 𝜎² (2𝑢𝑗𝜙𝑖 − 𝜙2)  

 𝑢1 =
1

2
; 𝑢2 = −

1

2
;  𝑎 = 𝜅𝜃; 𝑏1 = 𝜅𝜆 − 𝜌𝜎; 𝑏2 = 𝜅 + 𝜆 

To find the price for a put option we use the call/put parity theorem and the price of the put option is: 

𝑷(𝑺, 𝒗, 𝒕) = 𝑪(𝑺, 𝒗, 𝒕) − 𝑺𝒆−𝒓𝒇 𝝉𝑷𝟏 + 𝑲𝒆−𝒓𝒅 𝝉𝑷𝟐 

Remark: the Heston characteristic function can be easily evaluated using numerical software. The function charasteristic 
(charasteristic.m), provided in the appendix A, shows how to compute the Heston characteristic function in MATLAB [3]. 

3 METHODOLOGY 

3.1 CALIBRATION TO MARKET PRICES 

3.1.1 CALIBRATION PROCEDURE IN THE HESTON MODEL 

There are five parameters 𝒗, 𝜿, 𝝈, 𝜽 and 𝝆 that need to be estimated in the Heston model. The change for each parameter 
will bring a big impact on the correctness of the model, so the estimation of parameters becomes very important. A variety of 
methods can be chosen. For instance, one can observe the real market data, and use statistic tool to fit data in the Heston 
model (Ait-Sahila & Kimmel, 2005) [1]. Monte Carlo simulation is another famous method to do the calibration. In this study 
we use a commonly used method called the Inverse Problem, which means that the data is collected from the real market first, 
and then used to estimate parameters. The most popular approach to solving this inverse problem is to minimize the error or 
discrepancy between Heston model prices and real market prices. This usually turns out to be a non-linear least-squares 
optimization problem. More specifically, the squared differences between European currency option market prices and that 
of the model are minimized over the parameter space. Assume is a set of realization for the parameters in the Heston model. 
For a call option that is calculated from the Heston model, the optimization problem can be described as: 

𝑴𝒊𝒏 𝑺(𝛀) = 𝐦𝐢𝐧  (𝛀) ∑  (𝑪𝒊
𝑯 (𝑲𝒊, 𝑻𝒊)  − 𝑪𝒊

𝑴 (𝑲𝒊, 𝑻𝒊)) ²

𝑵

𝒊=𝟏

 

Where Ω is a vector of parameter values 𝐶𝑖
𝐻(𝐾𝑖 , 𝑇𝑖), 𝑎𝑛𝑑 𝐶𝑖

𝑀 (𝐾𝑖 , 𝑇𝑖) are the 𝑖 currency option prices from the model and 
market, respectively, with strike 𝐾𝑖  and maturity 𝑇𝑖 . N is the number of options used for calibration. Minimizing the objective 
function is clearly a nonlinear programming (NLP) problem with the nonlinear constrain 2𝜅𝜃 − 𝜎² > 0. Unfortunately, this 
function is far from being convex and it turned out, that usually there exist many local extrema depending on the initial guess. 
Therefore, a good initial guess might be critical and, even then, in some cases the convergence to the global optimum is not 
guaranteed. As a consequence, we decide to try both local and global optimizers. 

4 LOCAL OPTIMIZATION 

When a function exhibits several minima, local optimizers face the problem that once a solution has been found, we cannot 
be sure whether such solution is the best available. In other words, we cannot distinguish if the solution is a local minimum or 
a global one, or consequently, if we have reached a local solution, there is no easy way to measure how far we are from the 
global one. An alternative to tackle this problem is to define a criterion for acceptable solutions. If we select a priori which 
solutions can be deemed acceptable, we can at least ensure that any accepted solution will be consistent with our tolerance 
bounds. Conversely, if we found a non-acceptable solution, we can run the algorithm with a different starting point and keep 
searching for solutions that comply with our criteria [7]. 
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In our tests, we will require that the difference between model and market prices falls on average within the observed bid-
ask spreads. Therefore, we will consider the following set of acceptable solutions: 

𝟏

𝑵
∑ |𝑪𝒊

𝑯(𝑲𝒊, 𝑻𝒊) − 𝑪𝒊
𝑴(𝑲𝒊, 𝑻𝒊)| ≤

𝑵

𝒊=𝟏

𝟏

𝟐𝑵
∑ |𝒃𝒊𝒅𝒊 − 𝒂𝒔𝒌𝒊|

𝑵

𝒊=𝟏

 

bid and ask are the market observed bid and ask prices. 

As a local optimizer we will use the MATLAB lsqnonlin function (least-squares non-linear) [13], which implements a trust-
region reflective minimization algorithm (See Yuan (1999) [10] for an overview on the use of trust-region algorithms for solving 
non-linear problems). In addition, we will also define lower and upper bounds for the optimal parameters. These thresholds 
are included in the calibration in order to avoid possible solutions that, while mathematically feasible, are not acceptable in an 
economic sense. In particular, we will use the following bounds [8]: 

• Long-term variance and initial variance: Acceptable solutions for variance levels should take a possible value. However, 
given its mean-reversion, the volatility of most financial asset rarely reaches levels beyond 100%. Consequently, we will 
use bounds of 0 and 1 for both for 𝜽 and 𝑽𝟎. 

• Correlation: Statistical correlation takes values from -1 to 1. As previously mentioned, the correlation between volatility 
and stock prices tends to be negative. However, positive correlations might also be possible in particular cases. Therefore, 
the full range of acceptable solutions will be used in the calibration. 

• Volatility of variance: Being a volatility, this parameter should exhibit positives values. However, the volatility of financial 
assets may change dramatically in short time periods (i.e. the volatility itself is very volatile). Consequently, high upper 
bounds are required for this parameter. In order to avoid potential restrictions, a broad set of solutions, from 0 to 5, will 
be used in the calibration. 

• Mean-reversion speed: To ensure mean-reversion the parameter 𝜿 should take positive values (negative values will cause 
mean aversion). However, we have not found clear evidence regarding which upper value could be an appropriate bound. 
Consequently, instead of fixing an upper level, maximum values for 𝜅 will be dynamically set in the calibration as a by-
product of the non-negativity constraint. 

• Non-negativity constraint: In addition to the parameter bounds, another condition is required to ensure that the variance 
process in the Heston model does not reach zero or negative values. In this regard, Feller (1951) shows that a constraint: 
2𝜅𝜃 − 𝜎² > 0, guarantees that the variance in a CIR process is always strictly positive [4]. 

5 GLOBAL OPTIMIZATION 

The main advantage of global optimization is that it does not exhaust its search on the first minimum attained. Generally, 
global optimizers include stochastic movements in their search pattern, which make it possible to overcome local minimums 
and continue searching even if a potential solution has already been found. However, the use of stochastic methods also entails 
certain drawbacks. The mathematical properties of these algorithms are less tractable than those of local (deterministic) ones. 
In addition, despite its name, their convergence to the global minimum is not guaranteed. In fact, since the exit sequence is 
determined stochastically, the algorithm might decide to terminate early and, in some cases, the solution attained might 
underperform a local search. All in all, even if global optimization is theoretically more powerful, when working with functions 
of unknown shape, it is not easy to establish which calibration method will perform better [7]. 

In order to test the results of global optimization we employ the Simulated Annealing framework (SA). This algorithm 
conducts a guided search, where new iterations are generated by taking into account the previous information but also 
introducing randomization. Initially, the algorithm starts with high tolerance for random shocks, and different regions are 
surveyed during the first phase. As a consequence, even if a minimum is found, the algorithm keeps searching for better 
solutions. As time evolves, the algorithm decreases its tolerance until it eventually settles in the best optimum attained. 

In particular, we will use the Matlab function asamin, which was developed by Prof. Shinichi Sakata [5]. This function 
implements an Adaptive Simulated Annealing (ASA), dynamically adjusting the tolerance for random shocks. The ASA 
framework has been shown by Goel and Stander (2009) to provide good results among a range of different global optimizers. 
For comparability, we will use the same parameter bounds that we defined above. 
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6 DATA ANALYSIS, SIMULATIONS AND RESULTS 

6.1 DATA AND DATA SOURCES 

In order to produce fairly accurate results, the Heston model needs to be calibrated so as to estimate numerical values for 
its parameters. In calibrating the Heston model, EUR/USD was used as the underlying asset to estimate 𝒗, 𝜿, 𝝈, 𝜽 and 𝝆 and 

In determining the currency option price, Eur Libor (US Libor) data are used to determine the domestic (foreign) interest 
rate and the following market data had to be extracted from the foreign currency market. This data includes [12]: 

• EUR/USD Exchange rate, 

• Strike price. 

• Bid and Ask 

Currency call option quotes were obtained from the Bloomberg website. This data will be used to calibrate the model. The 
period runs from May 28, 2020 to May 07, 2021 and we use 5 maturities and for each maturity we use 5 strike prices (in total 
25 currency options). The currency options dataset (Dataset D) that we use in the calibration are shown in Appendix B. 

The domestic and foreign risk-free interest rates are provided by Bloomberg and the available maturities match those of 
the options. We use In-The-Money (ITM) currency call options sorted by 𝑆𝑡 𝐾⁄  with the following expiry dates: Options that 
expire in: 

• 1 month, [at 06/26/2020] 

• 3 months currency options, [at 09/04/2020] 

• 6 months currency options, [at 12/04/2020] 

• 9 months currency options, [at 03/05/2021] 

• One-year currency options. [at 05/07/2021] 

6.2 HESTON MODEL CALIBRATION RESULTS 

6.2.1 LOCAL CALIBRATION 

Using the bounds described above, the implementation of the local calibration algorithm is shown in Local calibration script 
(Local_calibration.m). In addition, function (costfloc.m) provides the objective function required for this script. For dataset D, 
the results obtained with local optimization are the following:  

Parameters 𝝊 𝜽 𝝈 𝝆 𝜿 

Values 0 0.0041 0.3163 0.9925 12.4467 

Using these results, the model predicted values and its comparison with the market prices are shown below: 
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Table 1. The model predicted values and its comparison with the market prices using local calibration 

Option 𝑴𝒊𝒅 𝒑𝒓𝒊𝒄𝒆 𝑯𝒆𝒔𝒕𝒐𝒏 𝒎𝒐𝒅𝒆𝒍 𝒑𝒓𝒊𝒄𝒆 (𝑯𝑴𝑷) 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 (𝒂𝒃𝒔) 𝑯𝑴𝑷 𝝐 [𝒃𝒊𝒅 𝒂𝒔𝒌] ? 

1 0,0213 0,023321215 0,002071215 Yes 

2 0,0192 0,020602937 0,001402937 Yes 

3 0,0173 0,018003745 0,000703745 Yes 

4 0,0155 0,015556239 0,0000562387 Yes 

5 0,0138 0,013289389 0,000460611 Yes 

6 0,0491 0,050678284 0,001628284 Yes 

7 0,0446 0,045674045 0,001124045 Yes 

8 0,0402 0,040862243 0,000662243 Yes 

9 0,036 0,036338303 0,000338303 Yes 

10 0,032 0,032180043 0,000230043 Yes 

11 0,0509 0,050130595 0,000769405 Yes 

12 0,0468 0,046318915 0,000481085 Yes 

13 0,0429 0,04272339 0,00017661 Yes 

14 0,0392 0,039340564 0,000190564 Yes 

15 0,0355 0,036164384 0,000664384 Yes 

16 0,0566 0,055651559 0,000948441 Yes 

17 0,0527 0,052113067 0,000586933 Yes 

18 0,0489 0,048738756 0,000161244 Yes 

19 0,0453 0,045530252 0,000280252 Yes 

20 0,0417 0,042487951 0,000787951 Yes 

21 0,0571 0,056029498 0,001070502 Yes 

22 0,0534 0,052748018 0,000601982 Yes 

23 0,0497 0,049613322 0,00003,6678 Yes 

24 0,0461 0,046624579 0,000524579 Yes 

25 0,0427 0,043780006 0,001080006 Yes 

INTERPRETATION OF THE TABLE 

As the table shows, the calibrated Heston model provides an excellent match for all traded options. All currency options 
have a predicted value that falls within the observed bid-ask spread. In addition, when evaluated in terms of our acceptance 
criterion, the model’s average distance from the mid-market price is 0,00068153, which is lower than the average deviation in 
the bid-ask spreads (0,003978). The Elapsed time for the local calibration is 2.377027 seconds. 

6.2.2 GLOBAL CALIBRATION 

Using the same bounds, the implementation of the global calibration algorithm is shown in global calibration script 
(global_calibration.m). In addition, function (costfglob.m) provides the objective function required for this script. For dataset 
D, the results obtained with global optimization are the following:  

Parameters 𝝊 𝜽 𝝈 𝝆 𝜿 

Values 0 0.0051 0.2898 1 12.5445 

Using these results, the model predicted values and its comparison with the market prices are shown below: 
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Table 2. The model predicted values and its comparison with the market prices using global calibration 

Option 𝑴𝒊𝒅 𝒑𝒓𝒊𝒄𝒆 𝑯𝒆𝒔𝒕𝒐𝒏 𝒎𝒐𝒅𝒆𝒍 𝒑𝒓𝒊𝒄𝒆 (𝑯𝑴𝑷) 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 (𝒂𝒃𝒔) 𝑯𝑴𝑷 𝝐 [𝒃𝒊𝒅 𝒂𝒔𝒌] ? 

1 0,0213 0,023417386 0,002167386 Yes 

2 0,0192 0,020845746 0,001645746 Yes 

3 0,0173 0,018398617 0,001098617 Yes 

4 0,0155 0,016102317 0,000602317 Yes 

5 0,0138 0,013979546 0,000229546 Yes 

6 0,0491 0,050953453 0,001903453 Yes 

7 0,0446 0,046323391 0,001773391 Yes 

8 0,0402 0,041935856 0,001735856 Yes 

9 0,036 0,037835831 0,001835831 Yes 

10 0,032 0,03405105 0,00210105 Yes 

11 0,0509 0,052496997 0,001596997 Yes 

12 0,0468 0,048859629 0,002059629 Yes 

13 0,0429 0,045398533 0,002498533 Yes 

14 0,0392 0,042115549 0,002965549 Yes 

15 0,0355 0,039011504 0,003511504 Yes 

16 0,0566 0,05877213 0,00217213 Yes 

17 0,0527 0,055379552 0,002679552 Yes 

18 0,0489 0,052129129 0,003229129 Yes 

19 0,0453 0,049021112 0,003771112 No 

20 0,0417 0,046054862 0,004354862 No 

21 0,0571 0,059710824 0,002610824 Yes 

22 0,0534 0,056534021 0,003184021 Yes 

23 0,0497 0,053482655 0,003832655 Yes 

24 0,0461 0,050556218 0,004456218 No 

25 0,0427 0,047753714 0,005053714 No 

INTERPRETATION OF THE TABLE 

As can be seen, the optimal parameters values under ASA are slightly different to those of local calibration. However, there 
are some divergences in the overall results. Under global calibration 21 out of 25 model values are within the observed bid-ask 
spreads, and the average distance to the mid-market price is 0,00252278. Therefore, the ASA solution is also acceptable 
according to our criterion and its quality is less accurate than the results obtained through MATLAB’s lsqnonlin. The main 
drawback of ASA is its substantially higher computational time (590.013684 seconds in ASA vs 6.5 seconds in MATLAB’s 
lsqnonlin). Based on these exercises, we can conclude that MATLAB’s lsqnonlin provides excellent calibration results (average 
distance from the mid-market price is 0,00068153 vs 0,00252278 for ASA and all call currency options prices are within the 
observed bid-ask spreads), and it also employs lower computational times. 

However, these results could be conditioned by an objective function that may not be complex enough to exploit the ASA 
strengths. In particular, since typically we do not know whether the objective function may exhibit several local minima, a 
conservative approach will be to run both calibration approaches. The drawback is, of course, that a global search might not 
necessarily improve the results provided by a local one. However, the advances in computing power and numerical methods 
keep reducing the time required for global calibration. In our calibration, the running time of ASA was lower than 10 minutes, 
which for many practical applications makes it worth testing for potentially better solutions. 

7 CONCLUSION 

This paper provides promising results regarding the application of the Heston model to currency option price estimation. 
We have adapted the original work of Heston (1993) to a foreign exchange (FX) setting. Simplicity, semi-analytic solution for 
options price and its ability to capture the option smile make from Heston model One of the most widely used stochastic 
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volatility models today. In this research paper, the EUR/USD exchange rate was considered and both local and global 
optimization has been explained and used to calibrate the model to the market data. 

The calibration parameters founded by both methods provided a very good results within a relatively short timeframe. 
However, local optimization with MATLAB's lsqnonlin function provides excellent calibration results for all call currency options 
prices in our data set and it also employs lower computational times. 
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APPENDIX A: MATLAB’S CODES USED IN CALIBRATING THE HESTON MODEL 

Characteristic function for Heston model (charasteristic.m): 

 

Call price in the Heston model 

 

Costfloc function for local calibration (Costfloc.m) 

 

Local calibration script (Local_calibration.m) 
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Costfglob function for global calibration (costfglob.m) 

 

Global calibration script (global_calibration.m) 
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APPENDIX B: SAMPLE OF DATA USED IN CALIBRATING THE HESTON MODE 

 

N Spot DTM Strike r=rd-rf Mid rd rf bid ask

1 1.1115 0.115079365079365 1.0875 -0.00706805 0.02125 -0.002781775 0.004286275 0.0171 0.0254

2 1.1115 0.115079365079365 1.09 -0.00706805 0.0192 -0.002781775 0.004286275 0.0152 0.0232

3 1.1115 0.115079365079365 1.0925 -0.00706805 0.0173 -0.002781775 0.004286275 0.0135 0.0211

4 1.1115 0.115079365079365 1.095 -0.00706805 0.0155 -0.002781775 0.004286275 0.0119 0.0191

5 1.1115 0.115079365079365 1.0975 -0.00706805 0.01375 -0.002781775 0.004286275 0.0103 0.0172

6 1.1115 0.392857142857143 1.06 -0.00706805 0.04905 -0.002781775 0.004286275 0.0445 0.0536

7 1.1115 0.392857142857143 1.065 -0.00706805 0.04455 -0.002781775 0.004286275 0.0401 0.049

8 1.1115 0.392857142857143 1.07 -0.00706805 0.0402 -0.002781775 0.004286275 0.0359 0.0445

9 1.1115 0.392857142857143 1.075 -0.00706805 0.036 -0.002781775 0.004286275 0.0318 0.0402

10 1.1115 0.392857142857143 1.08 -0.00706805 0.03195 -0.002781775 0.004286275 0.0279 0.036

11 1.1137 0.753968253968254 1.065 -0.00706805 0.0509 -0.002781775 0.004286275 0.0466 0.0552

12 1.1137 0.753968253968254 1.07 -0.00706805 0.0468 -0.002781775 0.004286275 0.0426 0.051

13 1.1137 0.753968253968254 1.075 -0.00706805 0.0429 -0.002781775 0.004286275 0.0388 0.047

14 1.1137 0.753968253968254 1.08 -0.00706805 0.03915 -0.002781775 0.004286275 0.0352 0.0431

15 1.1137 0.753968253968254 1.085 -0.00706805 0.0355 -0.002781775 0.004286275 0.0317 0.0393

16 1.1164 1.11507936507937 1.065 -0.00706805 0.0566 -0.002781775 0.004286275 0.0525 0.0607

17 1.1164 1.11507936507937 1.07 -0.00706805 0.0527 -0.002781775 0.004286275 0.0487 0.0567

18 1.1164 1.11507936507937 1.075 -0.00706805 0.0489 -0.002781775 0.004286275 0.045 0.0528

19 1.1164 1.11507936507937 1.08 -0.00706805 0.04525 -0.002781775 0.004286275 0.0415 0.049

20 1.1164 1.11507936507937 1.085 -0.00706805 0.0417 -0.002781775 0.004286275 0.038 0.0454

21 1.1186 1.36507936507937 1.07 -0.00706805 0.0571 -0.002781775 0.004286275 0.0531 0.0611

22 1.1186 1.36507936507937 1.075 -0.00706805 0.05335 -0.002781775 0.004286275 0.0494 0.0573

23 1.1186 1.36507936507937 1.08 -0.00706805 0.04965 -0.002781775 0.004286275 0.0458 0.0535

24 1.1186 1.36507936507937 1.085 -0.00706805 0.0461 -0.002781775 0.004286275 0.0424 0.0498

25 1.1186 1.36507936507937 1.09 -0.00706805 0.0427 -0.002781775 0.004286275 0.0391 0.0463


