Cauchy-Kowaleskya problem in fuzzy normed spaces

Walo Omana Rebecca¹ and Kumwimba Seya Didier²

¹Department of Mathematics and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa XI - B.P 190, RD Congo

²Department of Mathematics and Computer Science, Faculty of Science, University of Lubumbashi, C.R.F.D.M.I., Lubumbashi -B.P 1825, RD Congo

Copyright © 2021 ISSR Journals. This is an open access article distributed under the *Creative Commons Attribution License*, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: This paper deals with abstract version of the Cauchy Problem in fuzzy normed space. We define a Hausdorff measure of non compactness for bounded fuzzy set to prove existence of solutions by using a sequential approximation of the abstract problem. As a byproduct, we obtain a fuzzy version of the Cauchy-Kowaleskya Theorem for the generalized Hukuhara nonlinear partial differential equations.

Keywords: Fuzzy normed spaces, generalized Hukuhara derivative, Hausdorff measure of non compacteness.

MATH. SUBJECT CLASSIFICATION: 35R13, 34A07, 28E10.

1 INTRODUCTION

This paper deals with some abstract version of fuzzy Cauchy - Kowaleskya Problem in (abstract) fuzzy normed space for the existence of solution to the problem:

 $u'gH = A(t, u) t \in I \subset R, I =]0, a0[, a0 > 0]$

u (0) = u0.

In crisp and also in fuzzy cases (1) has been studied by many authors see for instance [3], [4] and [5] for the crisp case and [6], [7] and [9] for the fuzzy case. Although, for the fuzzy case, the authors consider the nonlinear function A continuous in both of its variables. This paper is concerned with the case where A could be only continuous with respect to u and measurable with respect to t. The lack of compactness of the most of fuzzy normed or metric spaces could be a big deal for the existence of solution to the problem (1), and therefore a big challenge that should be solved. For this purpose, it is natural to consider (1) under some non-compactness hypothesis. In crisp case, such studies have been done by some authors, see for instance [4] and references therein.

In this paper, we define a Hausdorff measure of non-compactness for bounded fuzzy sets and prove some of its properties. We use it to prove the compactness of some sequential of approximate solution of (1) under our hypothesis on A (t, u).

The paper in organized as follows.

- In section 2, we give some results on fuzzy normed spaces; we define a Hausdorff measure of non-compactness and prove some of its properties.
- In section 3, we recall some results on generalized Hukuhara differentiability and stat and prove our main results
- In section 4, we give some applications of our main results for the fuzzy partial differential equations:

∂tgHu = f (t, x, u, ∂xxgHu (t, x))	(2)
And : ðtgHu = F (t, x, u, ðxgHu (t, x))	(3)
for $u \in X = (E1, \cdot)$ where $E1 = R_F$.	

(1)

2 PRELIMINARIES

Let X be a non-empty set. A fuzzy subset of X is a mapping $u: X \rightarrow [0, 1]$. where u(x) = 0 correspond to no membership, 0 < u(x) < 1 to partial membership and u(x) = 1 to full membership; The α -level set $[u]_{\alpha}$ is defined as

$$[u]_{\alpha} = \{x \in X: u(x) \ge \alpha\}$$
 for each $\alpha \in [0, 1]$

Let us denote by E^n the space of all fuzzy subsets of R^n satisfying the following conditions

(1) $u \operatorname{maps} R^n \operatorname{onto} I = [0, 1];$

(2) $[u]_0$ is a bounded set of \mathbb{R}^n ;

- (3) *u* is normal, that is: there exists at least one point $x_0 \in \mathbb{R}^n$ such that $u(x_0) = 1$;
- (4) $[u]_{\alpha}$ is a compact subset of \mathbb{R}^n for all $\alpha \in I$; (5) u is fuzzy convex, that is

$$u (\lambda x + (1 - \lambda)y) \ge \min(u(x), u(y))$$
 for $\lambda \in I$

(5) implies that $[u]_{\alpha}$ is convex subset of \mathbb{R}^n (Lakshmikanthan [6]). We have the following representation Theorem.

Theorem 2.1. [9]

If $u \in E$, then

- (i) $[u]_{\alpha}$ is a non empty, compact and convex subset of \mathbb{R}^n for all $\alpha \in I$;
- (ii) $[u]_{\alpha}2 \subseteq [u]_{\alpha 1}$ for all $0 \le \alpha_1 \le \alpha_2 \le 1$;
- (iii) if (α_n) is an increasing sequence converging to α then $[u]_{\alpha} = {}^{\mathsf{T}}_{n \ge 1}[u]_{\alpha n}$.

Let us consider the mappings $u^*_{\alpha i}$, $u^-_{\alpha i}$:]0, 1] $\rightarrow R$ such that $-\infty < u_{\alpha i} \le u^*_{\alpha i} < +\infty$, and let $I_i^{\alpha_i} = \{x_i \in \mathbb{R} : u^-_{\alpha_i} \le x_i \le u^+_{\alpha_i}\}$. Then $I_i^{\alpha_i} \subset R$ is a real interval and in view of Theorem 2.1 we can consider

$$[u]_{\alpha} = \prod_{i=1^n} I_i^{\alpha_i}$$
 for all $0 < \alpha_i \le 1$ and $[u]_0 = cl \left(\bigcap_{0 < \alpha \le 1} [u]_{\alpha} \right)$

The supremum metric on Eⁿ is defined by

$$D_{\infty}(u,v) = \sup_{0 \le \alpha \le 1} \left(\max\left\{ \|u_{\alpha}^{-} - v_{\alpha}^{-}\|_{\infty}, \|u_{\alpha}^{+} - v_{\alpha}^{+}\|_{\infty} \right) \right\}$$

where $||w|/_{\infty} = \max_{1 \le i \le n} |w_i| w \in \mathbb{R}^n$.

 D_{∞} is a metric on E^n (see Taghavi et al.[8]). Let us consider the pseudo-norm

 $||u|| = D_{\infty}(u, ~0),$

Where

$$\mathfrak{d}(s) = \begin{cases} 0 if s = 0\\ \neq 0 otherwise \end{cases}$$

Then $|| \cdot ||_n$ satisfies the following properties.

Theorem 2.2.

- $||\cdot||_n : E^n \longrightarrow R$ + is such that :
- (1) $|| \cdot ||_n = 0$ iff u = 0.
- (2) $\|\lambda \odot u\|_n = |\lambda| \cdot \|u\|_n$ for all $\lambda \in \mathbb{R}$ and $u \in \mathbb{E}^n$.
- (3) $|| u \oplus v ||_n \le || u ||_n + ||v||_n$, for all $u, v \in E^n$.

- (4) $|||u||_n ||v||_n| \le D_{\infty}(u, v)$, for all $u, v \in E^n$.
- (5) $D_{\infty}(a \odot u, b \odot u) = |b a| \cdot ||u||_n$, for all a, $b \in \mathbb{R}$ and $u \in \mathbb{E}^n$.
- (6) $D_{\infty}(u, v) = \|u \ominus_{gH} v\|_n$ for all u, $v \in E^n$ and $u \ominus_{gH} v$ is the generalized Hukuhara difference of u and v.

Proof.

- (1) $||u||_n = D_{\infty}(u, \mathfrak{V}) = \sup_{0 \le \alpha \le 1} (\max\{||u^-\alpha||_{\infty}, ||u_{\alpha^+}||_{\infty})\}$ and $D_{\infty}(u, \mathfrak{V}) = 0$ iff $||u^-\alpha||_{\infty} = 0 = ||u^+\alpha||_{\infty}$, therefore $u = \mathfrak{V}$.
- (2) For all $\lambda \in \mathbb{R}$ and $u \in E^n$,

$$\begin{split} \|\lambda \odot u\|_n &= D_{\infty}(u, \tilde{0}) \\ &= \sup_{0 < \alpha \le 1} \left(\max\left\{ \|\lambda u_{\alpha}^-\|_{\infty}, \|\lambda u_{\alpha}^+\|_{\infty} \right) \right\} \\ &= |\lambda| \sup_{0 \le \alpha \le 1} \left(\max\left\{ \|u_{\alpha}^-\|_{\infty}, \|u_{\alpha}^+\|_{\infty} \right) \right\} \\ &= |\lambda| \cdot \|u\|_n. \end{split}$$

(3) For all $u, v \in E^n$,

$$\begin{split} \|u \oplus v\|_{n} &= \sup_{0 < \alpha \leq 1} \left\{ \max \left\{ \|(u \oplus v)_{\alpha}^{-}\|_{\infty}, \|(u \oplus v)_{\alpha}^{+}\|_{\infty} \right) \right\} \\ &= \sup_{0 < \alpha \leq 1} \left\{ \max \left(\|u_{\alpha}^{-} + v_{\alpha}^{-}\|_{\infty}, \|u_{\alpha}^{+} + v_{\alpha}^{+}\|_{\infty} \right) \right\} \\ &\leq \sup_{0 < \alpha \leq 1} \left\{ \max \left(\|u_{\alpha}^{-}\|_{\infty} + \|v_{\alpha}^{-}\|_{\infty}, \|u_{\alpha}^{+}\|_{\infty} + \|v_{\alpha}^{+}\|_{\infty} \right) \right\} \\ &\leq \sup_{0 < \alpha \leq 1} \left\{ \max \left(\|u_{\alpha}^{-}\|_{\infty}, \|u_{\alpha}^{+}\|_{\infty} \right) + \max \left(\|v_{\alpha}^{-}\|_{\infty}, \|v_{\alpha}^{+}\|_{\infty} \right) \right\} \\ &= \|u\|_{n} + \|v\|_{n}. \end{split}$$

(4) For all $u, v \in E^n$,

$$|\ |\ |u|\ |_n-|\ |v|\ |_n\ |=|D_\infty(u,\, \mathfrak{V})-D_\infty(v,\, \mathfrak{V})|\leq D_\infty(u,\, v)$$

(5) For all $a, b \in \mathbb{R}$ and $u \in E^n$,

$$D_{\infty}(a \odot u, \ b \odot u) = \sup_{0 < \alpha \le 1} \left\{ \max \left\{ \|au_{\alpha}^{-} - bu_{\alpha}^{-}\|_{\infty}, \|au_{\alpha}^{+} - bu_{\alpha}^{+}\|_{\infty} \right) \right\}$$
$$= \sup_{0 < \alpha \le 1} \left\{ \max \left(|b - a| \|u_{\alpha}^{-}\|_{\infty}, |b - a| \|u_{\alpha}^{+}\|_{\infty} \right) \right\}$$
$$= |b - a| \|u\|_{n}.$$

(6) We show that $D_{\infty}(u, v) = ||u \ominus_{gH} v||_n$. For all $u, v \in E^n$, $u \ominus_{gH} v \in E^n$ is equivalent to the existence of $c \neq \mathfrak{V}$ such that $u = v \oplus c$.

Hence $u_{\alpha}^{-} - v_{\alpha}^{-} \ncong 0$ and $u_{\alpha}^{+} - v_{\alpha}^{+} \ncong 0$. Hence

$$\|u \ominus_{gH} v\|_{n} = \sup_{0 < \alpha \le 1} \left\{ \max \left(\|u_{\alpha}^{-} - v_{\alpha}^{-}\|_{\infty}, \|u_{\alpha}^{+} - v_{\alpha}^{+}\|_{\infty} \right) \right\}$$
$$= D_{\infty}(u, v).$$

Let us consider E^n with the pseudo-norm $||\cdot||_n$ then the fuzzy space $(E^n, ||\cdot||_n)$ is not linear.

On the other hand (E^n , D_{∞}) is a complete metric space. Let us denote by We define an $X = (E^n, \|\cdot\|_n)$. open ball in X with center $a \in X$ and radius R by

$$B(a; R) = \{u \in E^n \mid D_{\infty}(u, a) < R\}$$

The closed ball is defined by

$$B^{-}(a; R) = cl(B(a; R))$$

Definition 2.3.

A subset $B \subset X$ is uniformly bounded if there exists a constant β such that

 $B \subset B(\mathfrak{G}; \mathcal{B})$

Let $B \subset X$ be the set of all uniformly bounded subsets of X, we define the diameter of $B \subset X$ by

$$diamB = \sup \{ \|u \ominus_{gH} v\|_n \mid u \in B \text{ and } v \in B \}$$

Definition 2.4.

Let $\{B (a_i; \varepsilon_i)\}_{i\in I}, a_i \in E^n, \varepsilon \in R +, \varepsilon_i > 0\}$ be a family of opens balls in X and let $B \subset X$ be such that $B \subset \bigvee_{i\in I} B(a_i; \varepsilon_i)$, then $\{B(a_i; \varepsilon_i)\}_{i\in I}$ is a ε -cover of B.

In general, if $\{U_i\}_{i \in I} \subset X$ is a family in X such that $B \subset \bigvee_{i \in I} U_i$, then $\{(U_i)\}_{i \in I}$ is a cover of B.

Since X is not a compact space, we define a fuzzy non compactness measure:

Definition 2.5.

Let $B \in B$ be a uniformly bounded set of X. The mapping $\beta : B \longrightarrow R + defined by <math>\beta(B) = inf\{d > 0 \text{ such that } B \text{ is covered by a finite number of fuzzy subset of diameter less than } d\}$ is a Hausdorff measure of non compactness.

Proposition 2.6.

Let $\beta : B \longrightarrow R^+$ be the Hausdorff measure of non compactness of the Definition 2.5. Then

- a) $\beta(B) = 0$ iff B is (relatively) compact.
- **b)** β is a semi-norm, that is

(i) $\beta(\lambda \odot B) = |\lambda|\beta(B)$ for all $B \in B$ and $\lambda \in R$.

(ii) $\beta(B_1 \bigoplus B_2) \leq \beta(B_1) + \beta(B_2)$ for all $B_1 \in B$ and $B_2 \in B$.

- **c)** If $B_1 \subset B_2$ then $\mathcal{B}(B_1) \leq \mathcal{B}(B_2)$.
- **d)** $\beta(B_1 \vee B_2) = \max(\beta(B_1), \beta(B_2))$
- e) β is continuous with respect to D_{∞} .

Proof.

We observe that (c), (d) and (e) are easy consequences of the definition of β and properties of fuzzy sets. So we prove (a) and (b).

- (a) $\mathcal{B}(B) = 0$ if and only if $||u \ominus_{gH} v||_{n=} 0$ for all u and $v \in B$ that is $D_{\infty}(u, v) = 0$ which means that any open ball centered at u contains v, for all $v \in B$. There for, one can find a finite family of sets $B_1 = B(u; r)$, $B_2 = \emptyset, ..., B_p \subset \emptyset$ such that $B = \bigvee_{i=1}^p B_i$. Hence (a).
- (b) (i) By the property (2) of $|| \cdot ||_{n}$, we have

$$\|\lambda \odot u\|_n = |\lambda| \|u\|_n$$

Let $B_1, B_2, \dots, B_p \subset X$ and $\varepsilon > 0$ be such that $B = \bigvee_{i=1}^p B_i$ and $diamB_i \leq \theta(B) + \varepsilon$.

Since $\|\lambda \odot u \ominus_{gH} \lambda \odot v\|_n = |\lambda| \|u \ominus_{gH} v\|_n$, we have

$$\lambda | \sup_{B_1} \{ \| u \ominus_{gH} v \|_n \} = \sup_{B_1} \{ \| \lambda \odot u \ominus_{gH} \lambda \odot v \|_n \}$$
$$= diam(\lambda \odot B_i).$$

Therefore

$$diam(\lambda \odot B_i) = |\lambda| diam B_i \le |\lambda| (\beta(B) + \varepsilon)$$

Hence $\beta(\lambda B) \leq |\lambda| \beta(B)$ since ε is arbitrary.

If λ 6= 0, then

$$\begin{split} \beta(B) &= \beta\left((\frac{1}{\lambda}.\lambda)B\right) \\ &= \beta\left(\frac{1}{\lambda}.(\lambda\odot B)\right) \\ &\leq \frac{1}{|\lambda|}\beta(\lambda\odot B). \end{split}$$

Therefore

$$|\lambda|\beta(B) \le \beta(\lambda \odot B)$$

Hence (b) is proved.

(ii) Let $\{S_i\}_{i=1}^n$ be a finite family of subsets of X such that $B_1 \subset \bigvee_{i=1}^n S_i$ and $diamS_i \leq \beta(B_1) + \frac{\varepsilon}{2}$ and $let\{T_j\}_{j=1}^n$ another family of subsets of X such that $B_2 \subset \bigvee_{j=1}^n T_j$ and $diamT_j \leq \beta(B_2) + \frac{\varepsilon}{2}$. Since $B_1 \oplus B_2 \subset \bigvee_{i,j=1}^n S_i \oplus T_j$, by the property (3) of $||\cdot||_n$ we have

$$diam (S_i \oplus T_j) \leq diamS_i + diamT_j$$
$$\leq \beta(B_1) + \frac{\varepsilon}{2} + \beta(B_2) + \frac{\varepsilon}{2}$$
$$= \beta(B_1) + \beta(B_2) + \varepsilon.$$

Hence (ii) is proved, since ε is arbitrary.

3 THE CAUCHY PROBLEM

3.1 GENERALIZED HUKUHARA DERIVATIVE

Definition 3.1. [2]

Let $u, v \in X$

$$u \ominus_{gH} v = w_{iff} \begin{cases} (i) & u = v \oplus w \\ (ii) & v = u \oplus (-1) \odot w. \end{cases}$$

In the term of α -level set, we have

- (a) For n = 1, $[u \ominus_{gH} v]_{\alpha} = [\min\{u_{\alpha}^{-} v_{\alpha}^{-}, u_{\alpha}^{+} v_{\alpha}^{+}\}, \max\{u_{\alpha}^{-} v_{\alpha}^{-}, u_{\alpha}^{+} v_{\alpha}^{+}\}].$
- (b) In Eⁿ, the existence of $[u]_{\alpha} \ominus_{int} [v]_{\alpha}$ does not imply $u \ominus_{gH} v$ in general.

Definition 3.2. [6]

A mapping $F: I \longrightarrow E^n$ is Hukuhara differentiable at $t_0 \in I$ if there exists $F^0(t_0) \in E^n$ such that

$$\lim_{h \to 0} \frac{F(t_0 + h) \ominus_H F(t_0)}{h} \quad and \quad \lim_{h \to 0} \frac{F(t_0) \ominus_H F(t_0 + h)}{h}$$

exist and are equal to $F'(t_0)$. Limits are taken in (E^n, D_∞) .

From Definition 3.2, one gets the differential of the multivariate mapping F_{α} , $\alpha \in [0, 1]$ given by

$$DF_{\alpha}(t) = [F^{0}(t)]_{\alpha}$$

On the other hand, we have

Theorem 3.3. [6]

Let $F : I \longrightarrow E^n$

- (a) For all $t \in I$, there exists $\beta > 0$ such that the H-difference $F(t+h) \ominus_H F(t)$ and $F(t) \ominus_H F(t-h)$ exist for all $0 \le h < \beta$.
- (b) The set-valued mapping F_{α} , $\alpha \in [0, 1]$ are uniformly differentiable, that is, there exists DF_{α} such that, there exists $\delta > 0$, and

$$D_{\infty}(F_{\alpha}(t+h)\ominus_{int}F_{\alpha}(t), \ D_{\infty}F_{\alpha}(t)) < \varepsilon$$

and

$$D_{\infty}(F_{\alpha}(t) \ominus_{int} F_{\alpha}(t-h), \ D_{\infty}F_{\alpha}(t)) < \varepsilon$$

for all $\varepsilon > 0$ and $0 \le h < \delta$.

That is

$$\lim_{h \to 0} \left\| \frac{F_{\alpha}(t+h) \ominus_{int} F_{\alpha}(t) \ominus_{H} h D F_{\alpha}(t)}{h} \right\|_{n} = 0$$
(4)

and

$$\lim_{h \to 0} \left\| \frac{F_{\alpha}(t) \ominus_{int} F_{\alpha}(t-h) \ominus_{H} h D F_{\alpha}(t)}{h} \right\|_{n} = 0.$$
 (5)

Theorem 3.4. [1]

Let F: I \rightarrow E¹ and denote F_{\alpha}(t) = [f_{\alpha}⁻(t), f_{\alpha}⁺(t)], $\alpha \in [0, 1]$. Then F is differentiable if f_{\alpha}⁻, f_{\alpha}⁺ are differentiable and, we say that:

(a) F is ((i) – gH)–differentiable at $t_0 \in I$, if

$$[F'(t_0)]_{\alpha} = \left[(f_{\alpha}^-)'(t_0), \ (f_{\alpha}^+)'(t_0) \right]; \ \alpha \in [0, 1]$$
(6)

(b) F is ((ii) – gH)–differentiable at $t_0 \in I$, if

$$[F'(t_0)]_{\alpha} = \left[(f_{\alpha}^+)'(t_0), \ (f_{\alpha}^-)'(t_0) \right]; \ \alpha \in [0, \ 1]$$
(7)

Definition 3.5. [1]

A point $t_0 \in I$ is a switching point for F^0 if in any neighborhood V of t_0 in the interior of I, there exist two points t_1 and t_2 such that $t_1 < t_0 < t_2$ and $I_1(6)$ holds at t_1 and (7) does not hold at t_2 or (7) holds and (6) does not hold.

 $II_1(7)$ holds at t_1 and (6) does not hold at t_2 or (6) holds and (7) does not hold.

Theorem 3.6. [6]

Assume $F: I \rightarrow E^1$ differentiable and does not have a switching point then, if F is integrable over I, we have

$$\int_{a} F'(s)ds = F(b) \ominus_{H} F(a) \text{ for } I = [0, 1] \subset \mathbb{R}$$

Proof. For all $\alpha \in [0, 1]$ fixed, if there is no switching point, then we may prove that

$$F_{\alpha}(b) = F_{\alpha}(a) \oplus_{int} \int_{a}^{b} DF_{\alpha}(s) \text{ or } F_{\alpha}(a) = F_{\alpha}(b) \oplus_{int} \int_{a}^{b} DF_{\alpha}(s)$$
(8)

3.2 MAIN RESULTS

Let $X = (E^1, || \cdot ||_1)$ and consider the fuzzy differential problem

$$u'_{gH} = A(t, u) \ t \in I$$
 (9)
 $u(t_0) = u_{0},$

Where

 $A: I \times X \longrightarrow X$ such, $I \subset R$ and $t_0 \in I$ an open subset of R.

 $A(t, \cdot): X \longrightarrow X$ is continuous.

 $A(\cdot, u): I \longrightarrow X$ is strongly measurable.

We consider the Cauchy problem (9) under the following hypothesis on A :

(H1) $||A(t, u)||_1 \le C||u||_1 + M$, where C > 0, and M > 0 are real.

- **(H2)** There exists K > 0 such that $\beta(A(I \times B)) \le K\beta(B)$ for any $B \in B$.
- (H3) There is no switching point.

Our main result can be formulate as follows.

Theorem 3.7.

Assume (H1)-(H3) hold, then (9) has at least one solution.

We shall need some preliminary lemmas.

Lemma 3.8.

Assume (H1) and (H3) hold, then there exists an approximate solution of (9) in $[t_0, t_0 + \alpha]$ for some $\alpha > 0$ small.

Proof.

Without lost of generality, let $t_0 = 0$, u(0) = 0; and $B \subset B(0, \delta)$ for some $\delta > 0$, be a bounded set in and X, $a_0 = \min\{\alpha, \frac{\delta}{M+C+1}\}$ $T_0 = [0, \alpha_0] \subset [0, \alpha]$. Let us partition T_0 into subintervals $0 < t_1 < t_2 < \cdots < t_N = \alpha_0$. For any $t \in [t_j, t_{j+1}]$, $j = 1, 2, \dots, N$, $(t - t_j) \odot A(t, u(t))$ is well defined, measurable on t for every $u \in B$ and continuous on $u \in B$ for a.e. $t \in]t_j, t_{j+1}[= T_0^j \subset T_0$. Therefore, we can define the sequence $(u_n(t))_{t \in J}$ by:

$$u_n(t) = \begin{cases} \mathbf{\hat{v}} & \text{if } t \leq \mathbf{0} \\ u_n(t_k) \oplus (t - t_k) \odot A(t_k, u_n(t_k)) & \text{if } s = \mathbf{0}, t \in [t_k, t_{k+1}] \\ \mathbf{\hat{v}} & \text{if } t > a_0 \end{cases}$$

and for j = 1, 2, ..., N we have $u_n(t_k) \in B(\mathfrak{Y}, \delta)$. Clearly $T_0 = [0, \alpha_0] \neq \emptyset$ since $0 \in T_0$. We observe that

$$\int_{t_k}^t A(t_k, \, u_n(t_k)) ds = (t - t_k) \odot A(t_k, \, u_n(t_k))$$
(10)

We may define t_k by $t_k = \frac{ka_0}{N}, \ k = 1, 2, \ldots, N$ to partition *T*₀.

We first have to prove that:

(i) u_n is uniformly continuous on $]-\infty, a_0]$.

(ii) u_n is *piecewise* derivable on T_0 .

(i) For all $t, t^0 \in T_0$, we have

$$\|u_n(t) \ominus_{gH} u_n(t')\|_1 = \sup_{0 < \alpha \le 1} \{\max\{\|(u_n)^-_{\alpha}(t) - (u_n)^-_{\alpha}(t')\|_{\infty}, \|(u_n)^+_{\alpha}(t) - (u_n)^+_{\alpha}(t')\|_{\infty}\}\}$$

Let us note by

$$D^+_{\infty}(u, v) = \|u^+_{\alpha} - v^+_{\alpha}\|_{\infty} \operatorname{and} D^-_{\infty}(u, v) = \|u^-_{\alpha} - v^-_{\alpha}\|_{\infty}$$

Hence

$$D_{\infty}^{+}(u_{n}(t), u_{n}(t^{0})) = ||(u_{n})^{+}_{\alpha}(t) - (u_{n})^{+}_{\alpha}(t_{k}) + (u_{n})^{+}_{\alpha}(t_{k}) - (u_{n})^{+}_{\alpha}(t^{0}) ||_{\infty}$$
$$= ||(t - t_{k}) A^{+}_{\alpha}(t_{k}, u_{n}(t_{k})) + (t_{k} - t^{0}) A^{+}_{\alpha}(t_{k}, u_{n}(t_{k}))||_{\infty}$$
$$= ||(t - t^{0}) A^{+}_{\alpha}(t_{k}, u_{n}(t_{k})) ||_{\infty}$$
$$= |t - t^{0}||A^{+}_{\alpha}(t_{k}, u_{n}(t_{k})) ||_{\infty}.$$

Similarly

$$D_{\infty}^{-}(u_{n}(t), u_{n}(t')) = |t - t'| \|A_{\alpha}^{-}(t_{k}, u_{n}(t_{k}))\|_{\infty}$$

Therefore

$$\begin{aligned} \|u_n(t) \ominus_{gH} u_n(t')\|_1 &= \sup_{0 < \alpha < 1} \{ \max\{|t - t'| \|A_{\alpha}^-(t_k, u_n(t_k))\|_{\infty}, |t - t'| \|A_{\alpha}^+(t_k, u_n(t_k))\|_{\infty} \} \} \\ &= |t - t'| \|A(t_k, u_n(t_k))\|_1 \\ &\leq |t - t'| (C\rho + M). \end{aligned}$$

 $\text{For } \delta < \tfrac{\varepsilon}{C\rho + M}, \ |t - t'| < \delta, \text{we have } \|u_n(t) \ominus_{gH} u_n(t')\|_1 < \varepsilon.$

Thus $u_n(t)$ is uniformly continuous on T_0 . Since $u_n(t) = 0$ for all $t \le 0$, we have, $u_n(t)$ uniformly continuous on $]-\infty$, a_0 .

(ii) For all $t \in]t_k$, $t_{k+1}[=\stackrel{\circ}{T_0^k}$, consider h > 0 small enough such that t + h and $t - h \in \stackrel{\circ}{T_0^k}$, then $u_n(t + h) \ominus_{gH} u_n(t)$ is well defined on T_0^k and

$$D_{\infty}(u_{n}(t+h) \ominus_{gH} u_{n}(t), h \odot A(t_{k}, u_{n}(t_{k}))) = \sup_{0 < \alpha < 1} \{ \max\{ \|(u_{n})_{\alpha}^{-}(t+h) - (u_{n})_{\alpha}^{-}(t) - hA_{\alpha}^{-}(t_{k}, u_{n}(t_{k}))\|_{\infty} \\ \|(u_{n})_{\alpha}^{+}(t+h) - (u_{n})_{\alpha}^{+}(t) - hA_{\alpha}^{+}(t_{k}, u_{n}(t_{k}))\|_{\infty} \} \}.$$

We have

$$k(u_n)^{\pm}_{\alpha}(t+h) - (u_n)^{\pm}_{\alpha}(t) - hA^{\pm}_{\alpha}(t_k, u_n(t_k))k_{\infty} = k[(t+h-t) - h]A^{\pm}_{\alpha}(t_k, u_n(t_k))k_{\infty} = 0$$

Hence

$$\lim_{h \to 0} \left\| \frac{(u_n)_{\alpha}^{\pm}(t+h) - (u_n)_{\alpha}^{\pm}(t) - hA_{\alpha}^{\pm}(t_k, u_n(t_k))}{h} \right\|_{\infty} = 0$$

So that

$$((u_n)^{\pm}_{\alpha})'(t) = A^{\pm}_{\alpha}(t_k, u_n(t_k))$$

Similarly

$$((u_n)^{\mp}_{\alpha})'(t) = A^{\mp}_{\alpha}(t_k, u_n(t_k))$$

Therefore, assuming that there is no switching point at t_k and t_{k+1} for all $1 \le k \le N$, then we have

$$(u_n)'_{gH}(t) = A(t_k, u_n(t_k))$$
 (11)

Lemma 3.9.

Assume (H1) and (H2) hold. If $u_n(t)$ is an approximate solution of (9), piecewise differentiable such that, there is no switching point at t_k and t_{k+1} for $1 \le k \le N - 1$, then

$$\|u_n(t) \ominus_H u_n(t_0) \ominus_H \int_{t_0}^t A(s, u_n(s)) ds\|_1 \le \varepsilon |t - t_0|$$

Proof.

Let $t_0 = 0$, t > 0 and a partition of T = [0, t] defined by $0 < t_1 < t_2 \cdots < t_N = t$ such that $t_k = \frac{kt}{N}$, for $k = 1, 2, \cdots, N$, for N > 0 large enough, and $u_n(t)$ derivable on $]t_j$, $t_{j+1}[, j = 1, 2 \cdots, N - 1$. Assume that $(u'_n(t))$ is bounded and measurable, which is possible by (H1), the definition of $u_n(t)$ and (11) and $u'_n(t)$ has no switching point. Then by the Aumann definition of fuzzy integral we have

$$un(tk+1) = un(tk) \bigoplus_{t_k}^{t_{k+1}}(un)gH(s)ds$$

And by Lemma 3.8, and continuity of integral we have

$$\begin{aligned} |u_n(t_{k+1}) \ominus_H u_n(t_k) \ominus_H \int_{t_k}^{t_{k+1}} A(s, u_n(s)) ds \|_1 \\ &= \|\int_{t_k}^{t_{k+1}} ((u_n)'_{gH}(s)) \ominus_H A(s, u_n(s))) ds \|_1 \\ &\leq \int_{t_k}^{t_{k+1}} \|((u_n)'_{gH}(s)) \ominus_H A(s, u_n(s)))\|_1 ds \leq \varepsilon \int_{t_k}^{t_{k+1}} ds \\ &= \varepsilon |t_{k+1} - t_k|. \end{aligned}$$

Therefore

$$\begin{aligned} \|u_n(t) \ominus_H u_n(0) \ominus_H \int_0^t A(s, u_n(s)) ds\|_1 &= \|\int_0^t ((u_n)'_{gH}(s)) \ominus_H A(s, u_n(s))) ds\|_1 \\ &= \|\sum_{k=1}^{N-1} \int_{t_k}^{t_{k+1}} ((u_n)'_{gH}(s)) \ominus_H A(s, u_n(s))) ds\|_1 \\ &\leq \sum_{k=1}^{N-1} \int_{t_k}^{t_{k+1}} \|((u_n)'_{gH}(s)) \ominus_H A(s, u_n(s)))\|_1 ds \\ &\leq \varepsilon \sum_{k=1}^{N-1} \int_{t_k}^{t_{k+1}} ds = \varepsilon \sum_{k=1}^{N-1} |t_{k+1} - t_k| \leq \varepsilon |t|, \end{aligned}$$

for all *t* such that]0, $t [\subset [0, a_0]$.

Proof of Theorem 3.7

The standard way to prove existence of solution of (9) by mean of approximate solution is to prove that

- 1. $(u_n(t))_{n\geq 1}$ is uniformly bounded and equi-continuous on $[0, a_0]$.
- 2. Using Ascoli-Arzela Theorem, $(u_n(t))_{n\geq 1}$ converges or has a subsequence converging to a solution of (9).

Unfortunately, X is not a compact space and (2⁰) is not sufficient to have convergence. We must use a non-compactness argument. Consider the differential equation

$$(u_n)'_{gH}(t) = A(t, u_n(t))$$

By (H3) and Theorem 3.6, we have

$$u_n(t) \ominus_H u_n(0) = \int_0^t (u_n)'_{gH}(s) ds = \int_0^t A(s, u_n(s)) ds$$

and

$$||u_n(t) \ominus_H u_n(0)||_1 \le \int_0^t ||A(s, u_n(s))||_1 ds.$$

By (H1), there exist C > 0 and M > 0 reals such that

$$\int_0^t \|A(s, u_n(s))\|_1 ds \le C \int_0^t \|u_n(s)\|_1 ds + a_0 M_{\cdot}, \ \forall \varepsilon > 0$$

Since $u_n(0) = 0$, we have

$$\|u_n(t)\|_1 \le a_0(M+\varepsilon) + C \int_0^t \|u_n(s)\|_1 ds, \ \forall \varepsilon > 0$$

By the Gronwall inequality, we have

 $||u_n(t)||_1 \le a_0(M+\varepsilon)e^{Ct} \le a_0(M+\varepsilon)e^{aC} = M_0$

Therefore $(u_n(t))_{n\geq 1}$ is uniformly bounded. For $t, t^0 \in [0, a_0]$, we have

$$\|u_n(t) \ominus_H u_n(t')\|_1 = \|\int_{t'}^t A(s, u_n(s))ds\|_1$$

$$\leq \int_{t'}^t \|A(s, u_n(s))\|_1 ds$$

$$\leq |t - t'| (CM_0 + M).$$

For $\delta > 0$ such that $|t - t^0| < \delta$ and $\delta < \frac{\varepsilon}{CM_0 + M'}$ we have

$$||u_n(t) \ominus_H u_n(t')||_1 < \varepsilon.$$

Thus $(u_n(t))_{n\geq 1}$ is equi-continuous.

Let N > 0 in N, $t \in [0, a_0]$ and define $B_N(t) = \{u_n(t) : n \ge N\}$. Then $B_N(0) = 0^\circ$ and $B_N([0, a_0])$ is bounded. Let $w(t) = \beta(B_N(t))$, then w(t) is continuous.

Indeed, by the property (b)(ii) of β , we have, for all $n \ge N$

$$\beta(\{u_n(t)\}) - \beta(\{u_n(s)\}) \leq \beta(\{u_n(t) \ominus_H u_n(s)\})$$

= $\beta(|t-s| \odot A(s, u_n(s)))$
= $\beta(|t-s| \odot A(s, B_N(s)))$
 $\leq |t-s| K \beta(B_N([0, a_0])).$

Since $B_N([0, a_0])$ is a bounded set, there exists $d_0 > 0$ such that $\beta(B_N([0, a_0])) \le d_0$. Therefore

If $|w(t) - w(s)| \le |t - s| K d_0$ Hence $\delta < \frac{\varepsilon}{K d_0 + 1}$, and $|t - s| < \delta$, we have $|w(t) - w(s)| < \varepsilon$, for all $\varepsilon > 0$ Now $\frac{w(t + h) - w(t)}{h}$ and $\frac{w(t) - w(t - h)}{h}$ are well defined for all h > 0 such that $[t - h, t + h] \subset [0, a_0]$.

Let

$$D_{-}w(t) = \lim_{h \to 0^{+}} \inf \frac{w(t) - w(t-h)}{h}$$

Then

$$D_{-}w(t) = \lim_{h \to 0^{+}} \inf \beta(\frac{1}{h} \odot [u_n(t) \ominus_H u_n(t-h)]), \quad \forall n \ge N.$$

$$= \lim_{h \to 0^{+}} \inf_{n \ge N} \{\frac{1}{h}\beta(h \odot A(t-h, u_n(t-h)))\}$$

$$\le \beta(\{(u_n)'_{aH}(t)\}), \quad \forall n \ge N.$$

Let us choose h > 0 such that $I_h = [t - h, t] \subset [0, a_0]$ and $\beta(u_n(I_h)) < \varepsilon_n$ for all $n \ge N$ and $\varepsilon_n \to 0$ as $n \to \infty$, then

$$\mathcal{B}(B_{N}(I_{h})) \leq \mathcal{B}(A(I_{h} \times B_{N}(I_{h}) \bigoplus u_{n}(I_{h})) \leq \mathcal{B}(A(I_{h} \times B_{N}(I_{h}))) + \mathcal{B}(u_{n}(I_{h})) \leq \mathcal{K}\mathcal{B}(B_{N}(I_{h}) + \varepsilon_{n})$$

Using the equicontinuity of $(u_n(t))_{n\geq 1}$, we have $B_N(t_n) \rightarrow B_N(t)$ as $h \rightarrow 0^+$ with respect to the Hausdorff distance D_{∞} . Therefore :

$$D_-w(t) \le Kw(t) + \varepsilon_n$$
, for all $n \ge N$

Integrating over [0, t] for all $t \in [0, a_0]$, and taking into account that w(0) = 0, we have

$$w(t) \le \int_0^t Kw(s)ds + \varepsilon_n a_0$$

Applying the Gronwall inequality, we have

$$w(t) \leq \varepsilon_n a_0 e^{Ka_0}$$

Since $\varepsilon_n \rightarrow 0$ as $n \rightarrow \infty$, we have

$$\mathcal{B}(\{u_n(t)\}) \rightarrow 0 \text{ as } n \rightarrow \infty$$

Thus $(u_n(t))_{n\geq 1}$ is relatively compact. Taking a subsequence, if necessary, we may assume that $(u_n(t))_{n\geq 1}$ converges to $u(t) \in E^1$. Let $B \subset B(\mathfrak{I}, \rho)$ be a bounded set, using (H1) in B, we have

$$||A(s, u_n(s))||_1 \le C||u_n(s)||_1 + M$$

$$\leq c\rho + M = M_{\rho}$$

for all $n \ge N$, and $s \in [0, a_0]$ such that $u_n(s) \in B$. By (9) we have

$$u_n(t) = u_0 \oplus \int_0^t A(s, u_n(s)) ds.$$

Using the fuzzy dominate convergence (see e.g. [10]) we have

$$u(t) = u_0 \oplus \int_0^t A(s, u(s)) ds, \quad t \in [0, a_0]$$

Assume that

(H4) $A: I \times X \longrightarrow X$ is locally-Lipschitz continuous on u. We have

Theorem 3.10.

Assume that A satisfies (H1), (H3) and (H4), then (9) has at least one solution on $[0, a_0]$.

Proof.

By Theorem 3.7, it suffices to show that (H4) implies (H2). Let L > 0 be the Lipschitz constant of A and B be a bounded set in X. Let $\{E_j\}_{j=1}^N$ a finite covering of B of diameter d_j , and $d = \inf_j d_j$. Then, for all $u_1, u_2 \in B$, $||u_1(t) \ominus_H u_2(t)||_1 \le d$ and $||A(t, u_1(t)) \ominus_H A(t, u_2(t))||_1 \le L ||u_1(t) \ominus_H u_2(t)||_1 \le L d$.

Hence $\mathcal{B}(A(I \times B)) \leq L\mathcal{B}(B)$.

Therefore, if we choose L = K, we have $\beta(A(I \times B)) \leq K\beta(B)$. Hence (H2) and we are done.

4 APPLICATIONS TO FUZZY NONLINEAR EVOLUTION EQUATIONS

4.1 GENERALIZED HUKUHARA PARTIAL DERIVATIVES

Definition 4.1. [1]

A fuzzy valued function of two variables is a relation that assigns to each ordered pair of real number in a set $D \subset R^2$, a unique fuzzy number denoted by f (x, t). The set D is then the domain of f and $R_f \subset E^1$ such that $R_f = \{f(x, t) \mid (x, t) \in D\}$ is the range of f.

The α -level set for f is represented by $[f(x,t)]_{\alpha} = [f_{\alpha}^{-}(x,t), f_{\alpha}^{+}(x,t)]$, for all $\alpha \in [0, 1]$ and $(x, t) \in D$. Note that f_{α}^{-} and $f_{\alpha}^{+} \in \mathbb{R}$.

Definition 4.2. [1]

Let $f: D \rightarrow E^1$ be a fuzzy valued function of two variables. We say that $L \in E^1$ is the limit of f(x,t) as $(x,t) \rightarrow (x_0,t_0)$ if for every $\varepsilon > 0$, there is $\delta(\varepsilon) > 0$ such that if $(x, t) \in D$ with $||(x, t) - (x_0,t_0)|| < \delta$, then $||f(x, t) \ominus_{gH} L||_1 < \varepsilon$.

Definition 4.3. [1]

A fuzzy valued function $f: D \rightarrow E^1$ is fuzzy-continuous at $(x_0, t_0) \in D$ if $\lim(x, t) \rightarrow (x0, t0)$ f(x, t) = f(x0, t0). f is fuzzy-continuous on D if it is fuzzy-continuous at each point of D.

Definition 4.4. [1]

Let $f: D \rightarrow E^1$ be a fuzzy valued function. If $f_{\alpha}^{-}(x, t)$ and $f_{\alpha}^{+}(x, t)$ are differentiable with respect to x and t, then we say that f(x, t) is

(I – PgH)–derivable with respect to x if

$$\partial_{x_{I-gH}} \left[f(x, t) \right]_{\alpha} = \left[\partial_x f_{\alpha}^{-}(x, t), \ \partial_x f_{\alpha}^{+}(x, t) \right]$$

(I – PgH)-derivable with respect to t if

$$\partial_{t_{I-gH}} \left[f(x, t) \right]_{\alpha} = \left[\partial_t f_{\alpha}^-(x, t), \ \partial_t f_{\alpha}^+(x, t) \right]$$

(II- PgH)-derivable with respect to x if

$$\partial_{x_{I-gH}} \left[f(x, t) \right]_{\alpha} = \left[\partial_x f^+_{\alpha}(x, t), \ \partial_x f^-_{\alpha}(x, t) \right]$$

(II - PgH)-derivable with respect to t if

$$\partial_{t_{I-gH}} \left[f(x, t) \right]_{\alpha} = \left[\partial_t f_{\alpha}^+(x, t), \ \partial_t f_{\alpha}^-(x, t) \right]$$

We assume that $\partial_x f(x, t)$ is (P - gH)-derivable at every $(x, t) \in D$ without switching point throughout the section. We have the following definition.

Definition 4.5. [1]

 $\partial_{xgH} f(x, t)$ is

(I - PgH)-derivable with respect to x if for all $(x, t) \in D$

$$\partial_{xx_{I-gH}} \left[\partial_x f(x, t) \right]_{\alpha} = \left[\partial_{xx} f_{\alpha}^{-}(x, t), \ \partial_{xx} f_{\alpha}^{+}(x, t) \right]$$
(12)

(II – PgH)–derivable with respect to x if for all $(x, t) \in D$

$$\partial_{xx_{II-gH}} \left[\partial_x f(x,t) \right]_{\alpha} = \left[\partial_{xx} f_{\alpha}^+(x,t), \ \partial_{xx} f_{\alpha}^-(x,t) \right]$$
(13)

Lemma 4.6. [1]

Let $f: D \rightarrow E^1$ be a fuzzy-continuous. If f is (P - gH) –derivable with respect to t, without switching point on $[a, \tau] \subset [a, b] \subset R$ with fuzzy-continuous derivative, then

$$\int_{a}^{\tau} \partial_{s_{P-gH}} f(x, s) ds = f(x, \tau) \ominus_{gH} f(x, a)$$
(14)

4.2 CAUCHY-KOWALESKYA THEOREMS

Let $u: D \subset \mathbb{R} \times \mathbb{R}^+ \longrightarrow E^1$ be a fuzzy valued function, and define a fuzzy differential relation on D by

$$\partial_{t_{qH}}u(x,t) = k \odot \partial_{xx_{qH}}u(x,t) \oplus g\left(u(x,t)\right)$$
(15)

where $g: E^1 \rightarrow E^1$ is a nonlinear fuzzy function with fuzzy variable. We use the following initial value

$$u(x, 0) = u_0 \in E^1$$

Let $X = (E^1, \|\cdot\|)$, where kuk = $D_{\infty}(u, \circ)$. We define a fuzzy operator A by

$$D(A) = \{u \in X: \partial_{xxgH}u, g(u) \in X\}$$

with

$$Au(x, t) = k \odot \partial_{xx_{gH}} u(x, t) \oplus g(u(x, t)), \ k \in \mathbb{R} \setminus \{0\}$$

(16)

We consider the Cauchy Problem

$$\dot{u}(t) = Au(t) t \in I \subset R, I =]0, a_0[, a_0 > 0$$

 $u(0)=u_{0,}$

where $\dot{u}(t) = \partial_{tgH}u(x, t)$.

We assume that g satisfies the following assumptions.

(G1) $g: X \longrightarrow X$ is locally Lipschitz-continuous.

(G2) There exists $M_0 > 0$ and C > 0 such that

$$||g(u)|| \leq C||u|| + M_0.$$

Lemma 4.7.

If (G1) and (G2) hold, then (H1) and (H2) are satisfied.

Proof.

Set k = 1 in (15), then we have

$$Au(t) = A(t, u(x, t))$$
$$= D_{xx}u \bigoplus g(u)$$

where $D_{xx} = \partial_{xxgH}$. The α -level set of Au(t) is given by $[Au(t)]_{\alpha} = [A_{\alpha}^{-}u(t), A_{\alpha}^{+}u(t)]$ where

 $A_{\alpha}^{-}u(t) = (D_{xx}u \oplus g(u))_{\alpha}^{-} = (D_{xx}u)_{\alpha}^{-} + g_{\alpha}^{-}(u)$

and

$$A^{+}_{\alpha}u(t) = (D_{xx}u \oplus g(u))^{+}_{\alpha} = (D_{xx}u)^{+}_{\alpha} + g^{+}_{\alpha}(u)$$

We observe that $(D_{xx}u)^-_{\alpha}$ and $(D_{xx}u)^+_{\alpha}$ are linear and continuous for all $\alpha \in [0, 1]$ and $u \in B$, where $B \subset B(\delta, \rho)$ is a bounded set. Let C_0^- and C_0^+ be such that $||(D_{xx}u)^-_{\alpha}||_{\infty} \leq C_0^-$ and $k(D_{xx}u)^+_{\alpha} = C_0^+ k$.

Therefore

$$|D_{xx}u|| = \sup_{\alpha} \max\left(\|(D_{xx}u)_{\alpha}^{-}\|_{\infty}, \ \|(D_{xx}u)_{\alpha}^{+}\|_{\infty} \right) \le C_{0}$$

Where $C_0 = \max\{C_0^-, C_0^+\}$, and by (G1), we have

$$||Au(t)|| \le ||D_{xx}u|| + ||g(u)|| \le C_0 + C||u|| + M_0$$

Let $M = C_0 + M_0$, then M > 0 and $||Au(t)|| \le C ||u|| + M$. Hence (H1) holds.

Let C > 0 be the Lipschitz constant of g and $B \subset X$ be a bounded set with finite cover $\{E_j\}_{j=1}^N$ of diameter $d_{j_j} j = 1, 2..., N$. Let $d = \inf d_{j_j}$ then for all u_1 and $u_2 \in B$, we have

$$\|u_1(t)\ominus_{gH}u_2(t)\|\leq d$$

and

$$||g(u_1) \ominus_{gH} g(u_2)|| \le C ||u_1(t) \ominus_{gH} u_2(t)|| \le Cd.$$

Since $||D_{xx}u|| \le C_0$ for all $u \in B$, we have

$$\|D_{xx}u_1 \ominus_{gH} D_{xx}u_2\| = \|D_{xx}(u_1 \ominus_{gH} u_2)\| \le C_0$$

where C_0 depends on *d*. Let us choose $C_0 > 0$ such that $C_0 = \rho d$. Then

$$\|Au_1(t) \ominus_{qH} Au_2(t)\| \le \rho d + Cd = (\rho + C)d.$$

Hence $\beta(A(B))$ is well defined and $\beta(A(B)) \le K\beta(B)$, where $K = \rho + C > 0$. Hence, (H2) holds.

Using Theorem 3.7 and Lemma 4.7, we have:

Theorem 4.8.

Assume (G1), (G2) and (H3) hold, then (16) has at least one solution on I = $[0, a_0] \subset \mathbb{R}$, $a_0 > 0$.

Consider now the equations

and

 $\partial_{tgH}u = F(t, u, \partial_{xgH}u) \tag{17}$ $u(x, 0) = u_0(x) \in E^1 \tag{18}$

Assume that :

(F1) *F* is locally Lipschitz continuous with respect to the second and the third variables. That is, there exists L > 0 such that for all u_1 , $u_2 \in V$ and $V \subset E^1$ an open set

$$\begin{aligned} \|F(t, u_1, \partial_x u_1) \ominus_{gH} F(t, u_2, \partial_x u_2)\|_1 \\ &\leq L(\|u_1 \ominus_{gH} u_2\|_1 + \|\partial_x u_1 \ominus_{gH} \partial_x u_2\|_1). \end{aligned}$$

(F1) There exist $C_1 > 0$, $C_2 > 0$ and M > 0 reals such that

 $||F(t, u, \partial_x u_1)||_1 \le C_1 / |u||_1 + C_2 ||\partial_x u||_1 + M$

Using Theorem 3.7, we have:

Corollary 4.9.

Assume (F1), (F2) and (H3) hold, then the initial value problem (17)-(18) has at least one solution on $[0, a_0] \subset R$

REFERENCES

- [1] T. Allahviranloo, Z. Gouyandeh, A. Armand, A. Hasanoglu, On fuzzy solution for heat equation based on generalized hukuhara differentiability, Fuzzy Sets and Systems, 265 (2015), 1-23.
- [2] B. Bede and L. Stefanini, Generalized differentiability of fuzzy valued functions, Fuzzy sets and Systems 230 (2013), 119-141.
- [3] K. Deimling, Nonlinear functional Analysis, Springer-Verlag N.Y. (1984).
- [4] M. Ghisi, The Cauchy-Kovalesky Theorem and non compactness measure, J. Math. Sci. Univ. Tokyo, 4 (1997), 627-647.
- [5] V. Lakshmikanthan and S. Leela, Nonlinear Differential equations in Banach spaces, Pergamon-Press, N.Y. (1990).
- [6] V. Lakshmikanthan and R.N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusion, Series in Mathematics Analysis and Application. Vol 6, Taylor and Francis, London (2003).
- [7] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued function and interval differential equations, Nonlinear Analysis, Theory Methods and applications, 71 (34) (2009), 1311-1328.
- [8] A. Taghavi and M. Mehdizadeh, Adjoint Operator in Fuzzy Normed linear spaces, J. of Math and Comp. Sciences, 2 (3) (2011), 453-458.
- [9] R. Walo Omana, Proof of a local existence and Peano-like Theorem for fuzzy differential equations, Proceeding of the 5th international Workshop on contemporary problems in Math. physics, Cotonou (2007).
- [10] R. Walo Omana, D. Kumwimba Seya and R. Mabela Metendo, Integration of a fuzzy setvalued function with respect to a fuzzy density measure, Far East Journal of Mathematical Science, 100 (6) (2016), 837-853.