
International Journal of Innovation and Scientific Research

ISSN 2351-8014 Vol. 9 No. 2 Sep. 2014, pp. 258-267

© 2014 Innovative Space of Scientific Research Journals

http://www.ijisr.issr-journals.org/

Corresponding Author: Peter Nimbe 258

Hash Table Collision Resolution Using a Multi-dimensional Array

Peter Nimbe
1
, Michael Opoku

2
, Samuel Ofori Frimpong

3
, Audrey Asante

4
, and Dominic-Mary Kornu

5

1
Department of Computer Science, K.N.U.S.T, Kumasi, Ghana

2
Department of Computer Science, K.N.U.S.T, Kumasi, Ghana

3
Department of Computer Science, C.U.C.G, Sunyani-Fiapre, Ghana

4
Department of Computer Science, C.U.C.G, Sunyani-Fiapre, Ghana

5
Department of Computer Science, K.N.U.S.T, Kumasi, Ghana

Copyright © 2014 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: This paper presents a new and innovative technique for handling collisions in hash tables based on a multi-

dimensional array. The proposed strategy followed the standard ways of evaluating and implementing algorithms to resolve

collisions in hash tables. This technique is an effective way of handling the problem of collisions in hash table slots or cells but

at a slight expense of space. It was discussed that an optimal representation of this scheme is to minimize or completely

remove the empty spaces created within the array.

 KEYWORDS: Open Addressing, Separate Chaining, Linear Probing, Quadratic Probing, Double hashing, Hash Function

1 INTRODUCTION

Open addressing and separate chaining are the 2 broad ways of collision resolution to be reviewed. They play a vital role

in the analysis and discussions [1]. In open addressing, all elements are stored in the hash table itself. Table slots are

systematically examined during search until the desired element is found. Elements are not stored outside the table. This is

not the case for separate chaining where elements are stored outside of the hash table by means of linked lists. Three

techniques are commonly used to compute probe sequences required for open addressing: linear probing, quadratic probing,

and double hashing. These techniques all guarantee that (h(k,0), h(k,1), …, k(k,m-1)) is a permutation of (0,1,…,m-1) for each

key k. However none of these techniques fulfills the assumption of uniform hashing [2].

1.1 LINEAR PROBING

In linear probing, original hash value is taken and successive values of a linear nature are added to the starting value.

Linear probing uses the hash function h(k,i) = (h`(k) + i) mod m for i=0, 1, …, m-1. It suffers from primary clustering even

though it is easy to implement. Clusters arise since an empty slot preceded by i full slots gets filled next with probability

(i+1)/m. The average search time for linear probe increases due to the building up of long runs of occupied slots [2].

1.2 QUADRATIC PROBING

In quadratic probing, original hash value is taken and successive values of an arbitrary quadratic polynomial are added to

the starting value. The idea here is to skip regions in the table with possible clusters [3]. It uses the hash function of the form:

h(k, i) = (h(k) + i
2
) mod n for i = 0, 1, 2. . . n-1 [3]

Peter Nimbe, Michael Opoku, Samuel Ofori Frimpong, Audrey Asante, and Dominic-Mary Kornu

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 259

1.3 DOUBLE HASHING

Double hashing is another method of collision resolution, but unlike the linear collision resolution, double hashing uses a

second hashing function which normally limits multiple collisions. The idea is that if two values hash to the same spot in the

table, a constant can be calculated from the initial value using the second hashing function which can then be used to change

the sequence of locations in the table, but still have access to the entire table [4].

1.4 SEPARATE CHAINING

This is a collision resolution technique where linked list of items are chained to the various addresses of the hash table

depending on where the keys hash to. Multiple lists could be created or built and these lists have to be maintained. In

separate chaining, items that collide are chained together in separate linked lists. In the open addressing schemes, keys are

converted into table addresses. As with elementary sequential search, lists can be kept in a sorted or unordered order. For

separate chaining, the time savings are less significant (because the lists are short) and the space usage is more significant

(because there are many lists) [5].

2 MATERIALS AND METHODS

Secondary data was used for the analysis basically from literature, journals, websites, and lecture notes. The NOF

algorithm was implemented in C++ programming language using Dev-C++ IDE. The concept of multi-dimensional arrays was

adopted in the design of the NOF collision resolution strategy.

3 RESULTS

The NOF strategy or technique is implemented as an algorithm and is expressed as a pseudocode. It is then implemented

using C++ programming language. Further illustration is given with respect to how the algorithm functions.

3.1 PSEUDOCODE

Declare variables: key, size, rem, j, assign

Declare arrays: h[size], arr[size][size]

Assign zero to rem

Assign zero to j

Assign zero to max

FOR a=0 to size

 FOR b=0 to size

 Assign zero to arr[a][b]

 END FOR

END FOR

FOR i=0 to size

 Prompt user to enter a key

 Get key

 Compute rem as key%size

 Assign zero to j

 Assign ‘false’ to assign

 DO

 IF arr[rem][j] is equal to zero

 Assign key to arr[rem][j]

 Assign ‘true’ to assign

 ELSE

 Increment j by 1

 END IF

 WHILE assign is equal to ‘false’

Hash Table Collision Resolution Using a Multi-dimensional Array

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 260

END FOR

End Line

FOR a=0 to size

 Display a

 FOR b=0 to size

 IF arr[a][b] is greater than zero

 Display arr[a][b]

 END IF

 End Line

 END FOR

END FOR

3.2 C++ IMPLEMENTATION

#include<iostream>

#include<iomanip>

using namespace std;

int main()

{

 int key, size, rem=0, j=0;

 bool assign;

 //Accepting the size of the hash table

 cout<<"Please specify the size of hash table:";

 cin>>size;

 int h[size], arr[size][size];

 //Initializing the array

 for(int a=0;a<size;a++)

 for(int b=0;b<size;b++)

 arr[a][b]=0;

 //Accepting the keys, hashing and placing them in appropriate location in array

 for(int i=0;i<size;i++)

 {

 cout<<"Please enter the keys to be hashed:";

 cin>>key;

 rem=key%size;

 j=0;

Peter Nimbe, Michael Opoku, Samuel Ofori Frimpong, Audrey Asante, and Dominic-Mary Kornu

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 261

 assign=false;

 do

 {

 if(arr[rem][j]==0)

 {

 arr[rem][j]=key;

 assign=true;

 }

 else

 j++;

 }while(assign==false);

 }

 cout<<endl;

 //Displaying the contents of the array

 for(int a=0;a<size;a++)

 {

 cout<<a;

 for(int b=0;b<size;b++)

 if(arr[a][b]>0)

 cout<<setw(5)<<arr[a][b];

 cout<<endl;

 }

 return 0;

}

3.3 BIG O NOTATION

#include<iostream>

#include<iomanip>

using namespace std;

int main()

{

 int key, size, rem=0, j=0;

Hash Table Collision Resolution Using a Multi-dimensional Array

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 262

 bool assign;

 //Accepting the size of the hash table

 cout<<"Please specify the size of hash table:";

 cin>>size;

 int h[size], arr[size][size];

 //Initializing the array

 for(int a=0;a<size;a++)

 for(int b=0;b<size;b++)

 arr[a][b]=0;

 //Accepting the keys, hashing and placing them in appropriate location in array

 for(int i=0;i<size;i++)

 {

 cout<<"Please enter the keys to be hashed:";

 cin>>key;

 rem=key%size;

 j=0;

 assign=false;

 do

 {

 if(arr[rem][j]==0)

 {

 arr[rem][j]=key;

 assign=true;

 }

 else

 j++;

 }while(assign==false);

 }

 cout<<endl;

O(N) O(N)

O(N)

O(1)

O(1)

O(N)

O(1)

O(1)

O(1)

O(1)

Peter Nimbe, Michael Opoku, Samuel Ofori Frimpong, Audrey Asante, and Dominic-Mary Kornu

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 263

 //Displaying the contents of the array

 for(int a=0;a<size;a++)

 {

 cout<<a;

 for(int b=0;b<size;b++)

 if(arr[a][b]>0)

 cout<<setw(5)<<arr[a][b];

 cout<<endl;

 }

 return 0;

}

Big O-Notation Time Efficiency Analyses

T(N) = [O(N)(O(N)+O(1))] + [O(N)(O(1)+O(1)+O(1)+O(N)(O(1)+O(1)+O(1))] + [O(N)(O(N))]

T(N) = [O(N
2
) + O(N)] + O(N) + O(N) + O(N) + O(N

2
)(O(1)+O(1)+O(1)) + O(N

2
)]

T(N) = [O(N
2
) + O(N) + O(N) + O(N) + O(N) + O(N

2
) + O(N

2
) + O(N

2
) + O(N

2
)]

T(N) = [O(N
2
) + O(N

2
) + O(N

2
) + O(N

2
)+ O(N

2
) + O(N) + O(N) + O(N) + O(N)]

As N→ ∞ all constants can be ignored

T(N) ≈ [O(5N
2
) + O(4N)]

In this case as N becomes very large O(N
2
) is considered the most significant factor of the Big O-Notation obtained from

the above T(N) deductions. Hence in the worst case scenario the algorithm’s time efficiency complexity can be measured by

T(N) = O(N
2
)

3.4 ILLUSTRATION

Step by step operations are outlined using linear probe, separate chaining and NOF (algorithm being proposed). The

elements to be hashed are 45, 67, 25, 13, 23, 5 and 88.

3.4.1 LINEAR PROBING

The hash function is given by h(x) = x%7

For the 1
st

 Element (x=45)

h(45) = 45%7 = 3

This implies the 1
st

 element will be stored in slot 3 of bucket array.

For the 2
nd

 Element (x=67)

h(67) = 67%7 = 4

This implies the 2
nd

 element will be stored in slot 4 of bucket array.

For the 3
rd

 Element (x=25)

h(25) = 25%7 = 4

This implies the 3
rd

 element will be stored in slot 4 of bucket array.

O(N)

O(N)

Hash Table Collision Resolution Using a Multi-dimensional Array

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 264

For the 4
th

 Element (x=13)

h(13) = 13%7 = 6

This implies the 4
th

 element will be stored in slot 6 of bucket array.

For the 5
th

 Element (x=23)

h(23) = 23%7 = 2

This implies the 5
th

 element will be stored in slot 2 of bucket array.

For the 6
th

 Element (x=5)

h(5) = 5%7 = 5

This implies the 6
th

 element will be stored in slot 5 of bucket array.

For the 7
th

 Element (x=88)

h(88) = 88%7 = 4

This implies the 7
th

 element will be stored in slot 4 of bucket array.

Table 1: Hash Table Representation

0

1

2 23 5
th

 Element

3 45 1
st

 Element

4 67 2
nd

 Element

5 25 3
rd

 Element here due to collision at slot 4

6 13 4
th

 Element

Analysis

• The 3
th

 Element (25) should have gone to slot 4 but there is a collision since the element 67 is already occupying

that slot. The next available slot (slot 5) was empty hence element 25 was placed there.

• The 6th Element (5) which should have been stored in slot 5 is occupied by element 25. The next slot which is

slot 6 is occupied. Afterwards, there is no next available slot due to the incremental approach adopted by linear

probing.

• Again the 7
th

 Element (88) which should have been stored in slot 4 is occupied by element 67. The next slot

which is slots 5 and 6 are occupied. Afterwards there is no next available slot due to the incremental approach

adopted by linear probing even though slot 0 and 1 are empty.

Limitations

• The hash table is not full to capacity yet not all the elements can be stored in the hash table due to the

incremental approach adopted by the linear probe. For instance element 5 had to be stored in slot 5 but then

that slot is occupied. So the next available slots which could have stored the element were not available. Hence

there is a dead end.

• The hash function should have placed elements in specific slots but because of collision they have been displaced

or moved elsewhere. Hence relating some of the elements to their corresponding slots is complex.

Peter Nimbe, Michael Opoku, Samuel Ofori Frimpong, Audrey Asante, and Dominic-Mary Kornu

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 265

3.4.2 SEPARATE CHAINING

Using the same function h(x) = x%7 and the elements (45, 67, 25, 13, 23, 5 and 88), separate chaining using linked list is

represented in Table 3 below.

Table 2: Hash Table Representation

0

1

2

3

4

5

6

Limitations

• The hash table is not optimally used because there are empty slots at 0 and 5.

• Keeping track of the multiple linked lists becomes extremely difficult.

3.4.3 NOF

The hash function is given by h(x) = x%7

For the 1
st

 Element (x=45)

h(45) = 45%7 = 3

This implies the 1
st

 element will be stored in row 3, column 0 of the n x n array.

For the 2
nd

 Element (x=67)

h(67) = 67%7 = 4

This implies the 2
nd

 element will be stored in row 4, column 0 of the n x n array.

For the 3
rd

 Element (x=25)

h(25) = 25%7 = 4

This implies the 3
rd

 element will be stored in row 4, column 1 of the n x n array.

For the 4
th

 Element (x=13)

h(13) = 13%7 = 6

This implies the 4
th

 element will be stored in row 6, column 0 of the n x n array.

For the 5
th

 Element (x=23)

h(23) = 23%7 = 2

This implies the 5
th

 element will be stored in row 2, column 0 of the n x n array.

For the 6
th

 Element (x=5)

h(5) = 5%7 = 5

This implies the 6
th

 element will be stored in row 5, column 0 of the n x n array.

For the 7
th

 Element (x=88)

h(88) = 88%7 = 4

23

45

67

5

13

25 88

Hash Table Collision Resolution Using a Multi-dimensional Array

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 266

This implies the 7
th

 element will be stored in row 4, column 2 of the n x n array.

Table 3: Hash Representation

 Row numbers of the n x n array (7 x 7)

 0 1 2 3 4 5 6

0

1

2 23

3 45

4 67 25 88

5 5

6 13

A better approach will be to use an n x m array where n is equal to the size of the hash table and m is equal to the

number of elements in the row with the highest number of elements. In the case above, the maximum number of elements

in row 4 is 3. Hence the value of m is 3. The new look of the array (7 x 3) is shown below in Table 4.

Table 4: Hash Representation

 Row numbers of the n x m array

 0 1 2

0

1

2 23

3 45

4 67 25 88

5 5

6 13

Limitations

• The multidimensional array is not optimally used because there are empty slots or cells, hence not very efficient

storage-wise.

4 DISCUSSION

Studies review that there are other approaches for resolving collision in hash tables. Most common schemes such as

linear probing, quadratic probing, double hashing, and separate chaining have some shortfalls. For example, performance is

degraded in linear probing as the hash table get nearly full; in quadratic probing, there is no guarantee of finding an empty

cell once the table gets more than half full. The proposed scheme is not very different in terms of disadvantages. Its primary

issue of concern is the unutilized empty spaces which makes the scheme not efficient storage-wise. Despite this concern, it is

proven to be very effective and efficient in collision resolution. In the implementation of NOF, a further and better

representation of the array size which was trimmed down or resized enhanced the space utilization though it could not

Peter Nimbe, Michael Opoku, Samuel Ofori Frimpong, Audrey Asante, and Dominic-Mary Kornu

ISSN : 2351-8014 Vol. 9 No. 2, Sep. 2014 267

eliminate it completely. It could be realized that an optimal implementation of the above technique is to remove or de-

allocate the empty spaces.

5 CONCLUSION

NOF (an abbreviation for Nimbe-Opoku-Frimpong) is a collision resolution strategy experimented on numeric values.

NOF is being proposed and is earnestly hoped it will add to the body of knowledge due to the fact that it has resolved the

problem of collisions in hash tables. The adoption of NOF will in effect eliminate primary clustering and deterioration in hash

table efficiency; which are common in the open addressing schemes. Future works to resolve collisions in hash tables will be

conducted with other data structures.

ACKNOWLEDGMENT

It has been God‘s grace and revelation that this paper has been completed. All praises and gratitude is given unto God.

Amen! Families and Friends are acknowledged for their encouragement and unyielding support. Reviewers and experts are

also shown gratitude for their assessments, contributions and comments towards this paper.

REFERENCES

[1] Knuth, D.E., The Art of Computer Programming: Sorting and Searching, volume3. Addison- Wesley Longman, second

edition, 1998.

[2] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to Algorithms, Third Edition, 2009.

[3] Bello, S.A., Liman, A.M., Gezawa, A.S., Garba, A., Ado, A., “Comparative Analysis of Linear Probing, Quadratic Probing

and Double Hashing Techniques for Resolving Collusion in a Hash Table”, International Journal of Scientific &

Engineering Research, 2014, in press

[4] Kumar A., Data Structure for ‘C’ Programming, Second Revised Edition, Laxmi Publications Pvt. Ltd, 2004

[5] Sedgewick, R., Algorithms in Java, Third Edition, 2003.

