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ABSTRACT: The aim of this paper, is to use a more realistic model which incorporates the effects of Brownian motion and the 

thermophoresis of nanoparticles for studying the effect of some control parameters on the onset of convective instability in a 
rotating medium filled of a Newtonian nanofluid layer and heated from below, this layer is assumed to have a low 
concentration of nanoparticles. The linear study which was achieved in this investigation shows that the thermal stability of 
Newtonian nanofluids depends of the buoyancy forces, the Coriolis forces generated by the rotation of the system, the 
Brownian motion, the thermophoresis of nanoparticles and other thermo-physical properties of nanoparticles. The studied 
problem will be solved analytically by converting our boundary value problem to an initial value problem, after this step we 
will approach numerically the searched solutions by polynomials of high degree to obtain a fifth order accurate solution.  
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1 INTRODUCTION 

The nanofluid is considered as a homogeneous fluid containing colloidal suspensions of nano-sized particles named 
nanoparticles in the base fluid (water, ethylene glycol, oil). The nanoparticles used in nanofluids are generally prepared of 
metals, oxides, carbides, or carbon nanotubes. The purpose of using nanofluids is to obtain a higher value of heat transfer 
coefficient compared with that of the base fluid , this remarkable properties make them potentially useful in many practical 
applications , for example in modern science and engineering including rotating machineries like nuclear reactors, petroleum 
industry, biochemical and geophysical problems. 

In the recent years, the problem of natural convection in a confined medium filled of a Newtonian nanofluid layer has 
been studied in different situations by several authors [1-7]. When the volumetric fraction of nanoparticles is constant at the 
horizontal walls limiting the layer, they found that the critical Rayleigh number can be decreased or increased by a significant 
quantity depending on the relative distribution of nanoparticles between the top and bottom walls.  

Today, the problem of natural convection for the nanofluids is studied by some authors [9-14] using a new type of 
boundary conditions for the nanoparticles which combines the contribution of the Brownian motion and the thermophoresis 
of nanoparticles instead to impose a nanoparticle volume fraction at the boundaries of the layer. The new model of 
boundary conditions assumes that the nanoparticle flux must be zero on the impermeable boundaries. D.A. Nield and A.V. 
Kuznetsov [9] are considered as the first ones who were used this type of boundary conditions for the nanoparticles. Until 
now, the precedent boundary conditions are used to study only the problem of natural convection in a porous (Darcy or 
Darcy-Brinkman model) or non-porous medium saturated by a nanofluid using the Galerkin weighted residuals method based 
only on some test functions. 

Our work consists of studying the Rayleigh-Bénard problem in a rotating medium filled of a Newtonian nanofluid layer in 
the free-free, rigid-free and rigid-rigid cases where the nanoparticle flux is assumed to be zero on the boundaries, our 
problem will be solved with a more accurate numerical method based on analytic approximations (power series method).  
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In this investigation we assume that the effect of the rotation in the momentum equation is restricted to the Coriolis 
force and also the centrifugal acceleration is negligible compared to the buoyancy force. 

The used method gives results with an absolute error of the order of 10-6 to the critical values characterizing the onset of 
the convection. To show the accuracy of our method in this study, we will check some results treated by Chandrasekhar [8] 
concerning the study of the convective instability of the regular fluids in a rotating medium. 

2 MATHEMATICAL FORMULATION 

We consider an infinite horizontal layer of an incompressible Newtonian nanofluid characterized by a low concentration 
of nanoparticles, heated uniformly from below and confined between two identical horizontal surfaces where the 
temperature is constant and the nanoparticle flux is zero on the boundaries, this layer will be subjected to a uniform rotation 

characterized by an angular velocity  Ω⃗⃗ = Ωe⃗ z  and also acted upon by the gravity force  g⃗ = −ge⃗ z ( Fig 1 ).The thermo-
physical properties of nanofluid (viscosity, thermal conductivity, specific heat) are assumed constant  in the vicinity of the 
temperature of the cold wall Tc except for the density variation in the momentum equation which is based on the Boussinesq 
approximations .The asterisks are used to distinguish the dimensional variables from the nondimensional variables (without 
asterisks). 

 

 

 

 

 

 

 

 

Fig. 1.  Physical configuration 

Within the framework of the assumptions which were made by Buongiorno [1] and Tzou [2, 3] in their publications 
for the Newtonian nanofluids, we can write the basic equations of conservation which govern our problem in 
dimensional form as follows: 

∇⃗⃗ ∗. V⃗⃗ ∗ = 0  (1)  

ρ0 [
∂V⃗⃗ ∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)V⃗⃗ ∗] = −∇⃗⃗ ∗P∗ − 2ρ0Ω⃗⃗ × V⃗⃗ ∗ + {ρ0[1 − β(T∗ − Tc)](1 − χ∗) + ρpχ

∗}g⃗ + η∇⃗⃗ ∗
2
V⃗⃗ ∗ (2)  

(ρc) [
∂T∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)T∗] = κ∇⃗⃗ ∗

2
T∗ + (ρc)p  [DB∇⃗⃗ 

∗χ∗. ∇⃗⃗ ∗T∗ + (
DT

Tc

) ∇⃗⃗ ∗T∗. ∇⃗⃗ ∗T∗] (3)  

∂χ∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)χ∗ = DB∇⃗⃗ 

∗
2
χ∗ + (

DT

Tc

) ∇⃗⃗ ∗
2
T∗ (4)  

Where   ∇⃗⃗ ∗ is the vector differential operator. 

If we consider the following dimensionless variables: 

(x∗; y∗; z∗) = h(x; y; z)   ;    t∗ =
h2

α
t   ;    V⃗⃗ ∗ =

α

h
V⃗⃗    ;    P∗ =

ηα

h2
P   ;    T∗ − Tc = (Th − Tc)T   ;    χ∗ − χ0

∗ = χ0
∗χ 

Then, we can get from the equations (1)-(4) the following adimensional forms: 

∇⃗⃗  . V⃗⃗ = 0 (5)  

Pr
−1 [

∂V⃗⃗ 

∂t
+ (V⃗⃗  . ∇⃗⃗ )V⃗⃗ ] = −∇⃗⃗ (P + RMz) + √TA(ve⃗ x − ue⃗ y) + ∇⃗⃗ 2V⃗⃗ + [(1 − χ0

∗)RaT − RNχ − χ0
∗RaTχ]e⃗ z (6)  

𝐳∗

𝟎

T∗ = Tc    ;    DB  
∂χ∗

∂z∗
+

DT

Tc

 
∂T∗

∂z∗
= 0 

 

T∗ = Th     ;    DB  
∂χ∗

∂z∗
+

DT

Tc

 
∂T∗

∂z∗
= 0 
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∂T

∂t
+ (V⃗⃗  . ∇⃗⃗ )T = ∇⃗⃗ 2T + NBLe

−1 ∇⃗⃗ χ. ∇⃗⃗ T + NANBLe
−1∇⃗⃗ T. ∇⃗⃗ T (7)  

∂χ

∂t
+ (V⃗⃗  . ∇⃗⃗ )χ = Le

−1∇⃗⃗ 2χ + NALe
−1∇⃗⃗ 2T (8)  

Such that: 

Pr =
η

ρ0α
    ;     Le =

α

DB

    ;      NB =
(ρc)p

(ρc)  
χ0
∗       ;      TA = (

2ρ0Ωh2

η
)

2

    ;      α =
κ

(ρc)
     ;     Ra =

ρ0gβh3(Th − Tc)

ηα
 

RM =
[ρ0(1 − χ0

∗) + ρpχ0
∗ ]gh3

ηα
      ;      RN =

(ρp − ρ0)χ0
∗gh3

ηα
      ;       NA =

DT

DBTc

(
Th − Tc

χ0
∗ ) 

Where  χ0
∗   is the reference value for nanoparticle volume fraction. 

2.1 BASIC SOLUTION 

The basic solution of our problem is a quiescent thermal equilibrium state, it’s assumed to be independent of time where 
the equilibrium variables are varying in the z-direction, therefore: 

V⃗⃗ b = 0⃗  (9)  

Tb = 1    ;    
dχb

dz
+ NA

dTb

dz
= 0     at       z = 0 (10)  

Tb = 0    ;    
dχb

dz
+ NA

dTb

dz
= 0     at       z = 1 (11)  

If we introduce the precedent results into equations (6)-(8), we obtain: 

∇⃗⃗ (Pb + RMz) = [(1 − χ0
∗)RaT − RNχ − χ0

∗RaTχ]e⃗ z (12)  

d2Tb

dz2
+ NBLe

−1 (
dχb

dz

dTb

dz
) + NANBLe

−1 (
dTb

dz
)
2

= 0 (13)  

d2χb

dz2
+ NA

d2Tb

dz2
= 0 (14)  

After using the boundary conditions (10) and (11), we can integrate the equation (14) between 0 and z for obtaining: 

χb = NA(1 − Tb) + χ0 (15)  

Where   χ0  is the relative nanoparticle volume fraction at   z = 0  , such that: 

χ0 =
χb
∗ (0) − χ0

∗

χ0
∗  

If we take into account the expression (15), we can get after simplification of the equation (13): 

d2Tb

dz2
= 0 (16)  

Finally, we obtain after an integrating of the equation (16) between 0 and z : 

Tb = 1 − z (17)  

χb = NAz + χ0 (18)  

2.2 STABILITY ANALYSIS  

For analyzing the stability of the system, we superimpose infinitesimal perturbations on the basic solutions as follows: 

T = Tb + T′       ;         V⃗⃗ = V⃗⃗ b + V⃗⃗ ′        ;         P = Pb + P′      ;        χ = χb + χ′  (19)  
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In the framework of the Oberbeck-Boussinesq approximations, we can neglect the terms which are coming from the 
product of the temperature and the volumetric fraction of nanoparticles in equation (6), if we suppose also that we are in the 
case of small temperature gradients in a dilute suspension of nanoparticles, we can obtain after introducing the expressions 
(19) into equations (5)-(8) the following linearized equations: 

∇⃗⃗  . V′⃗⃗  ⃗ = 0 (20)  

Pr
−1

∂V⃗⃗ ′

∂t
= − ∇⃗⃗ P′ + √TA(v′e⃗ x − u′e⃗ y) + (RaT

′ − RNχ′)e⃗ z + ∇⃗⃗ 2V⃗⃗ ′ (21)  

∂T′

∂t
− w′ = ∇⃗⃗ 2T′ − NANBLe

−1
∂T′

∂z
−NBLe

−1
∂χ′

∂z
 (22)  

∂χ′

∂t
+ NAw′ = NALe

−1∇⃗⃗ 2T′ + Le
−1∇⃗⃗ 2χ′ (23)  

After application of the curl operator twice to the equation (21) and using the equation (20), we obtain the following 
equations: 

Pr
−1 ∂F′

∂t
= ∇⃗⃗ 2F′ + √TA

∂w′

∂z
 (24)  

Pr
−1 ∂  

∂t
∇⃗⃗ 2w′ = ∇⃗⃗ 4w′ + Ra∇⃗⃗ 2

2T′ − RN∇⃗⃗ 2
2χ′ − √TA  

∂F′

∂z
 (25)  

Where: 

∇⃗⃗ 2
2= (

∂2  

∂x2
) + (

∂2  

∂y2
)  ;   F′ = (

∂v′

∂x
−

∂u′

∂y
) 

Analyzing the disturbances into normal modes, we can simplify the equations (22) - (25) by assuming that the 
perturbation quantities are of the form: 

(w′, T′, χ′, F′) = (𝓌(z), 𝒯(z),𝒳(z), ℱ(z))exp[i(kxx + kyy) + σt] (26)  

After introducing the expressions (26) into equations (22) - (25), we obtain: 

Pr
−1σℱ = (D2 − k2)ℱ + √TAD𝓌 (27)  

Pr
−1σ(D2 − k2)𝓌 = (D2 − k2)2𝓌 − k2Ra𝒯 + k2RN𝒳 − √TA Dℱ (28)  

σ𝒯 − 𝓌 = (D2 − k2)𝒯 − NANBLe
−1D𝒯−NBLe

−1D𝒳 (29)  

σ𝒳 + NA𝓌 = NALe
−1(D2 − k2)𝒯 + Le

−1(D2 − k2)𝒳 (30)  

Where: 

k = √kx
2 + ky

2      ;     D = d dz⁄  

The equations (27) - (30) will be solved subject to the following boundary conditions: 

- For the rigid-rigid case; 

𝓌 = D𝓌 = 𝒯 = D(𝒳 + NA𝒯) = ℱ = 0           at     z = 0 ; 1 (31)  

- For the free-free case; 

𝓌 = D2𝓌 = 𝒯 = D(𝒳 + NA𝒯) = Dℱ = 0      at     z = 0 ; 1 (32)  

- For the rigid-free case;  

𝓌 = D𝓌 = 𝒯 = D(𝒳 + NA𝒯) = ℱ = 0           at     z = 0 (33)  

𝓌 = D2𝓌 = 𝒯 = D(𝒳 + NA𝒯) = Dℱ = 0      at     z = 1 (34)  
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2.3 METHOD OF SOLUTION 

In this study we assume that the principle of exchange of stability is valid, as we are interested in a stationary stability 
study  (σ = 0) , then the equations (27)-(30) become: 

√TAD𝓌 + (D2 − k2)ℱ = 0 (35)  

(D2 − k2)2𝓌 − k2Ra𝒯 + k2RN𝒳 − √TA Dℱ = 0  (36)  

𝓌 + (D2 − k2)𝒯 − NANBLe
−1D𝒯−NBLe

−1D𝒳 = 0 (37)  

NA𝓌 − NALe
−1(D2 − k2)𝒯 − Le

−1(D2 − k2)𝒳 = 0 (38)  

We can solve the equations (35)-(38) which are subjected to the conditions (31)-(34), by making a suitable change of 
variables that makes the number of variables equal to the number of boundary conditions to obtain a set of ten first order 
ordinary differential equations which we can write it in the following form: 

d  

dz
ui(z) = aijuj(z) ;   1 ≤ i, j ≤ 10  (39)  

 

With: 

aij = aij(k, Ra, TA, NB, Le , RN , NA) 

The solution of the system (39) in matrix notation can be written as follows: 

U = BC (40)  

Where: 

  B = ((bij(z))1≤i≤10
1≤j≤10

)       :    is a square matrix of order 10 × 10. 

  U = ((ui(z))1≤i≤10
)
T

       :    is the unknown vector column of our problem. 

  C = ((cj)1≤j≤10
)
T

             :     is a constant vector column. 

If we assume that the matrix B is written in the following form: 

B = ((ui
j(z))1≤i≤10

1≤j≤10

) (41)  

Therefore, the use of five boundary conditions at   z =  0 , allows us to write each variable ui(z) as a linear combination 

for five functions  ui
j(z) , such that: 

bij(0) = ui
j(0) = δij (42)  

Where   δij  is the Kronecker delta symbol. 

After introducing the new expressions of the variables  ui(z) in the system (39), we will obtain the following equations:   

d  

dz
ui

j(z) = ailul
j(z) ;   1 ≤ i, l, j ≤ 10  (43)  

For each value of  j , we must solve a set of ten first order ordinary differential equations which are subjected to the initial 

conditions (42) , by approaching the variables ui
j(z)  with power series defined in the interval [0,1] and truncated at the order  

N ,  such that: 

ui
j(z) = ∑ dp

i ,j
zp

p=N

p=0

 (44)  
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A linear combination of the solutions ui
j(z) satisfying the boundary conditions (31), (32) or (33) and (34) at  z =  1  leads 

to a homogeneous algebraic system for the coefficients of the combination. A necessary condition for the existence of 
nontrivial solution is the vanishing of the determinant which can be formally written as: 

f(Ra , k , TA , NB , Le , RN , NA) = 0 (45)  

If we give to each control parameter  (TA , NB , Le , RN , NA)  its value, we can plot the neutral curve of the stationary 
convection by the numerical research of the smallest real positive value of the thermal Rayleigh number  Ra  which 
corresponds to a fixed wave number k and verifies the dispersion relation (45). After that, we will find a set of points (k, Ra) 
which help us to plot our curve and find the critical value (kc, Rac) which characterizes the onset of the convective stationary 
instability, this critical value represents the minimum value of the obtained curve. 

2.4 VALIDATION OF THE METHOD  

The main aim in this investigation is to study the influence of a uniform rotation on the convective instability of the 
Newtonian nanofluids in a confined medium filled of a Newtonian nanofluid layer for different cases of boundary conditions: 
free-free, rigid-free and rigid-rigid cases. Our study shows that the thermal stability of Newtonian nanofluids depends on five 
parameters :  TA , NB, Le , RN  and NA . 

The truncation order N  which corresponds to the convergence of our method is determined, when the five digits after 
the comma of the critical thermal Rayleigh number Rac for a Newtonian nanofluid (NB = 0.01, Le = 100 , RN = 1 , NA = 0.1) 
remain unchanged (Tables 1 and 3). 

To validate our method, we compared our results with those obtained by Chandrasekhar [8] concerning the Rayleigh-
Bénard problem in a rotating medium filled of a regular fluid layer (Tables 4 and 5). To make this careful comparison, we 
must take into consideration the restrictions Le

−1 = RN = NA = NB = 0  in the governing equations of our problem. 

Table 1. The stationary instability threshold of the Newtonian nanofluid for different values of the Taylor number in the free-free case. 

N 
TA = 100 

 

TA = 400 

 

TA = 1000 

kc Rac kc Rac kc Rac 

15 2.57044 805.42899 3.14490 1162.22820 3.70512 1661.28391 

16 2.57044 805.42870 3.14491 1162.22717 3.70515 1661.28256 

17 2.57044 805.42938 3.14491 1162.22781 3.70515 1661.28128 

18 2.57044 805.42939 3.14491 1162.22799 3.70515 1661.28295 

19 2.57044 805.42936 3.14491 1162.22788 3.70515 1661.28217 

20 2.57044 805.42936 3.14491 1162.22791 3.70515 1661.28242 

21 2.57044 805.42936 3.14491 1162.22791 3.70515 1661.28236 

22 2.57044 805.42936 3.14491 1162.22791 3.70515 1661.28237 

23 2.57044 805.42936 3.14491 1162.22791 3.70515 1661.28237 

24 2.57044 805.42936 3.14491 1162.22791 3.70515 1661.28237 

25 2.57044 805.42936 3.14491 1162.22791 3.70515 1661.28237 
 

 

 

 

 

Exact value 2.57044 805.42936 3.14491 1162.22791 3.70515 1661.28237 
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Table 2. The stationary instability threshold of the Newtonian nanofluid for different values of the Taylor number in the rigid-free case 

N 
TA = 100 

 

TA = 400 

 

TA = 1000 

kc Rac kc Rac kc Rac 

21 2.84015 1188.87687 3.19644 1454.44537 3.62143 1866.88793 

22 2.84015 1188.87684 3.19644 1454.44470 3.62144 1866.87576 

23 2.84015 1188.87685 3.19644 1454.44490 3.62143 1866.87944 

24 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87862 

25 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87873 

26 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87874 

27 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87873 

28 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87873 

29 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87873 

30 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87873 

31 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87873 
 

 

 

 

 

Exact value 2.84015 1188.87685 3.19644 1454.44486 3.62144 1866.87873 

Table 3. The stationary instability threshold of the Newtonian nanofluid for different values of the Taylor number in the rigid-rigid case 

N 
TA = 100 

 

TA = 400 

 

TA = 1000 

kc Rac kc Rac kc Rac 

22 3.15254 1740.78625 3.27530 1880.49260 3.48211 2136.47610 

23 3.15249 1740.79954 3.27486 1880.57516 3.47817 2136.92631 

24 3.15251 1740.79543 3.27499 1880.55699 3.47900 2136.91107 

25 3.15251 1740.79644 3.27497 1880.55985 3.47891 2136.88477 

26 3.15251 1740.79624 3.27497 1880.55968 3.47889 2136.89773 

27 3.15251 1740.79627 3.27497 1880.55960 3.47891 2136.89377 

28 3.15251 1740.79627 3.27497 1880.55964 3.47890 2136.89466 

29 3.15251 1740.79627 3.27497 1880.55963 3.47890 2136.89452 

30 3.15251 1740.79627 3.27497 1880.55963 3.47890 2136.89453 

31 3.15251 1740.79627 3.27497 1880.55963 3.47890 2136.89453 

32 3.15251 1740.79627 3.27497 1880.55963 3.47890 2136.89453 
 

 

 

 

 

Exact value 3.15251 1740.79627 3.27497 1880.55963 3.47890 2136.89453 
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Table 4. The comparison of critical values of Rayleigh number and the corresponding wave number with Chandrasekhar [8] for different 
values of the Taylor number in the free-free and rigid-rigid cases 

TA 

Chandrasekhar  

 

Present study 

 

Chandrasekhar  

 

Present study 

free-free case free-free case rigid-rigid case rigid-rigid case 

kc Rac kc Rac N kc Rac kc Rac N 

0  2.2214 657.511 2.22144 657.51138 17 3.117 1707.762 3.11632 1707.76177 28 

10 2.270 677.1 2.27012 677.07685 21 3.10 1713 3.12087 1712.67407 28 

100 2.594 826.3 2.59354 826.28956 19 3.15 1756.6 3.16081 1756.34730 27 

500 3.278 1275 2.27756 1274.56710 19 3.30 1940.5 3.31925 1940.19924 29 

1000 3.710 1676 3.71043 1676.11802 19 3.50 2151.7 3.48471 2151.34119 30 

Table 5. The comparison of critical values of Rayleigh number and the corresponding wave number with Chandrasekhar [8] for different 
values of the Taylor number in the rigid-free case 

 

TA 

 

Chandrasekhar  

 

Present study 

rigid-free case rigid-free case 

kc Rac kc Rac N 

0  2.682 1100.65 2.68232 1100.64960 22 

6.25 2.68 1108.5 2.69450 1107.72808 22 

31.25 2.70 1136.5 2.74103 1135.40837 23 

62.50 2.79 1169.5 2.79489 1168.72026 23 

187.5 2.975 1291.7 2.97549 1290.80447 23 

 

According to the above results, we notice that there is a very good agreement between our results and the previous 
works, hence the accuracy of the used method. Briefly, the convergence of the results depends greatly on the truncation 
order N of the power series and also of the Taylor number  TA . Finally, to ensure the accuracy of our obtained critical values 
for the studied nanofluids, we will take as truncation order:   

- N = 22  :  for the free-free case . 

- N = 27  :  for the rigid-free case . 

- N = 30  :  for the rigid-rigid case. 

3  RESULTS AND DISCUSSION 

To study the effect of a parameter (TA, NB , Le , RN , NA) on the onset of the convective instability in a rotating medium 
filled of a Newtonian nanofluid layer, we must plot in Figs 2-5 the variation of the critical thermal Rayleigh number Rac as a 
function of the Taylor number TA for different values of this parameter and compare the obtained results with those of the 
regular fluids which are characterized by:  

Le
−1 = RN = NA = NB = 0 

Generally the variation in the critical thermal Rayleigh number Rac with the Taylor number TA is an increasing function 
whatever the value taken for the parameters NB  , Le ,  RN  and NA , so the presence of the Coriolis forces allows us to reduce 
the effect of the buoyancy forces , hence the Taylor number TA has a stabilizing effect.The precedent figures confirm that the 
presence of the friction on the horizontal walls is a factor producing the thermal stability of the system, such that : 

Rac
rr > Rac

rf > Rac
ff  
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Fig. 2. Plot of Rac as a function of  TA for different values of NB in the case where Le=100 , RN=1  and  NA=0.1 

 

Fig. 3. Plot of Rac as a function of  TA for different values of Le in the case where NB=0.01 , RN=1  and  NA=0.1 
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Fig. 4. Plot of Rac as a function of TA for different values of RN in the case where NB=0.01 , Le=100  and  NA=0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Plot of Rac as a function of TA for different values of NA in the case where NB=0.01 , Le=100  and  RN=1 
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The Fig 2  shows that the modified particle-density increment  NB has almost no effect on the convective instability of the 

nanofluids, this result may be explained by its low value (NB~10−3 − 10−1) which appears only in the perturbed energy 

equation (22) as a product with the inverse of the Lewis number (Le~102 − 103)  near the temperature gradient and the 

volume fraction gradient of nanoparticles, so the effect of this parameter on the onset of convection in nanofluids will be 

very small which we can neglect it . 

From the Figs 3 and 4 we conclude that an increase either in the Lewis number Le or in the concentration Rayleigh 

number RN  allows us to accelerate the onset of the convection, hence they have a destabilizing effect .Therefore, to ensure 

the stability of the system, we can use the nanofluids which are having a less thermal diffusivity or containing less dense 

nanoparticles. 

  In this investigation, we find also that an increase in the volume fraction of nanoparticles destabilizes the nanofluids, 

because an increase in this parameter, increases also the Brownian motion and the thermophoresis of nanoparticles, which 

cause the destabilizing effect, this result confirm that the regular fluids are more stable than the nanofluids. 

When the modified diffusivity ratio NA increases, the temperature difference between the horizontal plates also 

increases. The Fig 5 shows that an increase in the modified diffusivity ratio NA allows us to decrease the critical thermal 

Rayleigh number  Rac , this result can be explained by the increase in the buoyancy forces which destabilizes the system.  

4 CONCLUSIONS 

In this paper, we have examined the effect of a uniform rotation on the onset of convection in a confined medium filled 

of a Newtonian nanofluid layer, heated uniformly from below and cooled from above for free-free, rigid-rigid and rigid -free 

boundaries in the case where the nanoparticle flux is zero on the boundaries. The contribution of the Brownian motion and 

the thermophoresis of nanoparticles in the equation expressing the buoyancy effect coupled with the conservation of 

nanoparticles have a  major effect on the onset of convection  compared with their contributions in the thermal energy 

equation . 

The resulting eigenvalue problem is solved analytically and numerically using the power series method. The behavior of 

various parameters like the Taylor number  TA , the modified particle-density increment NB, the Lewis number Le , the 

concentration Rayleigh number RN and the modified diffusivity ratio NA on the onset of convection has been analysed. The 

results can be summarized as follows: 

I. The presence of the Coriolis forces allows us to stabilize the Newtonian nanofluids, such that an increase in the 

Taylor number TA induces also an increase in the critical thermal Rayleigh number Rac. 

II. The presence of the friction on the horizontal walls is a factor producing the thermal stability of the system, where 

the rigid-rigid case is the more stable case compared with the rigid-free and free-free cases , such that: 

Rac
rr > Rac

rf > Rac
ff  

III. To ensure the stability of the system, we can use the nanofluids which are having a less thermal diffusivity, a low 

concentration of nanoparticles or consisting of less dense nanoparticles. 

IV. An increase either in the volume fraction of nanoparticles, in the buoyancy forces, in the Brownian motion or in the 

thermophoresis of nanoparticles allows us to destabilize the nanofluids. 

V. The regular fluids are more stable than the nanofluids. 

VI. The used method to solve the convection problem gives more accurate results, because the absolute error of the  

obtained critical values which characterize the onset of the convection is of the order of 10-6 , Hence, we can used 

our results as a reference to validate other results of the similar problems . 
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NOMENCLATURE 

Symbols : 

DB Brownian diffusion coefficient (m2 s⁄ ) 
DT Thermophoretic diffusion coefficient (m2 s⁄ ) 
g Acceleration due to gravity (m s2⁄ ) 
h Layer depth (m) 
κ Thermal conductivity of Nanofluid   (W K.m⁄ ) 
kx

∗  Wave number in x∗ direction (m−1) 
ky

∗  Wave number in y∗ direction (m−1) 

kc
∗ Critical wave number (m−1) 

Le Lewis number 
NA Modified diffusivity ratio 
NB Modified particle-density increment 
P∗ Pressure (Pa) 
Pr Prandtl number 
Ra Thermal Rayleigh  number 
Rac Critical Rayleigh  number 
RM Density Rayleigh number 
RN Concentration Rayleigh number 

V⃗⃗ ∗ Velocity vector (m s⁄ ) 

TA Taylor number 
T∗ Temperature (K) 
t∗ Time  (s) 

u∗, v∗, w∗ Velocity components (m s⁄ ) 
x∗, y∗, z∗ Cartesian coordinates (m) 

Greek symbols : 

α Thermal diffusivity of  nanofluid (m2 s⁄ ) 
β Thermal expansion coefficient of base fluid   (K−1) 
Ω Angular velocity  (rad. s−1) 
η Viscosity of nanofluid (Pa. s) 
ρ  Nanofluid density (kg m3⁄ ) 
ρ0 Fluid density at reference temperature(kg m3⁄ ) 

(ρc)   Heat capacity of nanofluid (J m3. K⁄ ) 
(ρc)𝑝 Heat capacity of  nanoparticles  (J m3. K⁄ ) 

σ∗ Growth rate of disturbances (s−1) 
χ∗ Volume fraction of nanoparticles  

Superscripts : 

∗ Dimensional variable 
′ Perturbation variable 
ff Free - Free case 
rf Rigid - Free case 
rr Rigid - Rigid case  

Subscripts : 

c Cold 
h Hot 
ac Critical  number 
b Basic solution  
f Base fluid 
p Nanoparticle 
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