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ABSTRACT: This article presents a numerical study on natural convection heat transfer of nanofluid (Cu-water) in a square 

enclosure having a cold obstacle. The transport equations were solved using the finite difference formulation based on 
Alternating Direction Implicit method (ADI method). The method used is validated against previous works. Effects of various 
design parameters such as the height of the obstacle  (0.125 ≤ 𝐻 ≤ 0.5), Rayleigh number (103  ≤  𝑅𝑎 ≤  106), and 
nanoparticles volume fraction (0 ≤  𝜑 ≤  0.2) on the heat transfer are investigated. The results show that the heat transfer 
rate inside the enclosure increases by increasing the height of the cold block, the volume fraction of nanoparticles and 
Rayleigh number. 
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1 INTRODUCTION 

For many years, natural convection and heat transfer in the square enclosures are encountered in a wide range of 
engineering applications, such as heating and cooling nuclear systems of reactors, lubrication technologies, cooling of 
electronic devices, ventilation of rooms with radiators, cooling of containers and heat exchangers. There are many studies 
concerning the heat transfer in rectangular or square cavities have been studied extensively in the literature. One of the first 
works on the numerical simulation of natural convection inside cavities is the pioneering work of De Vahl Davis [1]. He 
performed a numerical simulation on a square cavity with two vertical isothermal walls, one cold and one hot, and two 
horizontal adiabatic walls. This cavity with those boundary conditions is known as differentially heated cavity (DHC). AlAmiri 
et al [2] reported natural convection heat transfer in a partially divided square enclosure. The results showed that the heat 
transfer increases by increasing the height of block and volume fraction of the nanoparticles. The same problem was 
examined by Guiet et al [3] and Varol et al [4] in the case of a triangular enclosure. Boulahia and Sehaqui [5] investigated a 
numerical simulation of natural convection of nanofluid in a square cavity having a centrally square heater. Their simulations 
indicate that increasing the size of the heated block, and Rayleigh number leads to an increase in average Nusselt number. 
Bouafia and Daube [6] studied natural convection in cavity filled with air having a heated solid body. They observed that the 
induced disturbances determined for weakly supercritical regimes indicate the existence of two instability types driven by 
different physical mechanisms: shear and buoyancy-driven instabilities, according to whether the flow develops in a square 
or in a tall cavity. Ha and Jung [7] considered a numerical study on three dimensional conjugate heat transfer of natural 
convection and conduction in a differentially heated cubic enclosure having an internal heated square partition. They 
investigated the effects of three-dimensionalities on the fluid flow and thermal characteristics in the enclosure. Other studies 
were carried out on the natural convection of the nanofluid, for example, [8-9].  

The objective of this work is to investigate the effects of volume fraction, the height of the cold block and Rayleigh 
number on the heat transfer of nanofluid (Cu-water) for natural convection in a square enclosure having a cold block. Our 
numerical results are presented in the form of plots of isotherms, streamlines and average Nusselt numbers to show the 
influence of nanofluid and the height of the cold block. 
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2 PROBLEM STATEMENT 

The studied configuration and coordinate system of the considered enclosure in the present study are shown in Fig. 1. It is 
a differentially heated enclosure with an inside cold block, filled with nanofluids. The cold obstacle is maintained at a 
temperature  𝑇𝑐  . The vertical walls are maintained respectively at hot ( 𝑇ℎ) and cold  (𝑇𝑐) temperatures, the horizontal walls 
are adiabatic. It is assumed that the nanofluid is newtonian, incompressible and laminar. The base fluid and the nanoparticles 
are in a thermal equilibrium state. The thermo-physical properties of the nanofluid used in this study as listed in Table 1. 

Fig. 1. Geometrical configuration and boundary conditions 

Table 1. Thermo-physical properties of water and nanoparticles at T = 298 K  

 Copper (Cu)   Water (H2O) (25°C) 

𝐶𝑝(J/Kg K) 385 4179 

𝜌(Kg/m3) 8933 997.1 

𝑘(W/mK) 401 0.6 

𝛽(K−1) 1.67 10−5 2.1 10−4 

𝜇(kg m−1 s−1)  − 1.005 10−3 

3 MATHEMATICAL FORMULATION 

The governing equations including the transient equations of the continuity, momentum and energy in terms of the 
stream–vorticity formulation for an incompressible flow are expressed in the following format: 
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The horizontal and vertical velocities are given by the following relations: 
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Where the nanofluid effective density, heat capacity, thermal expansion coefficient and thermal diffusivity are calculated 
from the following equations [10]: 

𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑠 (5) 
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(𝜌𝐶𝑝)
𝑛𝑓

= (1 − 𝜑)(𝜌𝐶𝑝)
𝑓

+ 𝜑(𝜌𝐶𝑝)
𝑠
 (6) 

(𝜌𝛽)𝑛𝑓 = (1 − 𝜑)(𝜌𝛽)𝑓 + 𝜑(𝜌𝛽)𝑠 (7) 

𝛼𝑛𝑓 = 𝑘𝑛𝑓/(𝜌𝐶𝑝)
𝑛𝑓

 (8) 

The effective thermal conductivity of the nanofluid is approximated by the Maxwell–Garnetts (MG) model [15]. 

𝑘𝑛𝑓

𝑘𝑓

=
𝑘𝑠 + 2𝑘𝑓 − 2(𝑘𝑓 − 𝑘𝑠)𝜑

𝑘𝑠 + 2𝑘𝑓 + (𝑘𝑓 − 𝑘𝑠)𝜑
 (9) 

This model has been previously used by Kefayati et al. [11], Xuan and Roetzel [10], Khanafer et al. [12] and many other 
authors. Note that the MG model is restricted to nanoparticles with the same spherical shape and suitable for small 
temperature gradients. The viscosity of the nanofluid can be approximated as viscosity of a base fluid lf containing dilute 
suspension of fine spherical particles and is given by Brinkman [16]: 
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 (10) 

All terms are defined in the Nomenclature. 

The following dimensionless variables for natural convection are defined based on properties of pure fluid:  
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Dimensionless numbers for the system are defined as: 
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By using the dimensionless parameters, the equations are written as: 
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Where 𝐴 ,  𝐵 , and  𝜆  are given by the following relations: 
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The dimensionless horizontal and vertical velocities can be written as: 
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(17) 

The dimensionless boundary conditions are written as: 

𝜃 = 0,   𝑢 = 𝑣 = 𝜓 = 0,   𝜔 = −𝜕²𝜓/𝜕𝑥² on right wall of the enclosure 

(18) 

𝜃 = 1,   𝑢 = 𝑣 = 𝜓 = 0,   𝜔 = −𝜕²𝜓/𝜕𝑥² on left wall of the enclosure 

𝜕𝜃/𝜕𝑦 = 0,   𝑢 = 𝑣 = 𝜓 = 0,   𝜔 = −𝜕²𝜓/𝜕𝑦²     on top and bottom walls of the enclosure 

𝜃 = 0,   𝑢 = 𝑣 = 𝜓 = 0 on the cold block 

The total mean Nusselt number of all walls of the enclosure and the block is defined as: 
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4 NUMERICAL DETAILS 

The discretization procedure of the governing equations (Eqs. (13)–(15)) and boundary conditions described by Eq. (18) 
were solved numerically using an implicit stable finite difference technique. The vorticity and energy equations are solved 
using the ADI (Alternating Direction Implicit) method and the stream function equation is solved by the SLOR (Successive Line 
Over Relaxation) method while upwind difference is used for convective terms for the sake of numerical stability. Line by line 
application of TDMA (Tri-Diagonal Matrix Algorithm) method [17] is applied on the vorticity and energy equations until sum 
of the residuals became less than  10−6 . The developed algorithm was implemented in FORTRAN program. 

4.1 GRID INDEPENDENCE STUDY 

In order to determine a proper grid for the numerical simulation, a square enclosure filled with Cu–water nanofluid 
(𝜑 = 0.1) having a cold block with height and width respectively  𝑤 = 0.25𝐿 and  ℎ = 0.5𝐿 is analyzed in two extreme 
Rayleigh numbers (𝑅𝑎 = 104 and 106). The mean Nusselt number obtained using different grid numbers for particular cases 
is presented in Table 2. As can be observed from the table, a uniform 103 × 103 grid is sufficiently fine for the numerical 
calculation. 

Table 2. Effect of the grid size on  𝑵𝒖̅̅ ̅̅
𝒕𝒐𝒕 for the cavity filled with the Cu–water nanofluid (𝝋 = 𝟎. 𝟏) having a cold block with height and 

width respectively  𝒘 = 𝟎. 𝟐𝟓𝑳 and  𝒉 = 𝟎. 𝟓𝑳 

𝑅𝑎 63 × 63 83 × 83 103 × 103 123 × 123 

104 11.261 11.243   11.235     11.231 

106 22.173 22.165 22.161   22.159 

4.2 VALIDATIONS 

The present numerical scheme was validated against various numerical results available in the literature. the benchmark 
problem of natural convection in a square cavity which considered by De Vahl Davis [1] filled with Air (𝑃𝑟 =  0.71). Table 3 
demonstrates an excellent comparison of the average Nusselt number between the present results and the numerical results 
found in the literature [13-14]. Fig. 2 illustrates a comparison of the isotherms and streamlines between the present results 
and the results reported by Brakos et al. [13] at different Rayleigh number. 
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Table 3. Comparison of 𝑵𝒖̅̅ ̅̅  between the present results and those reported in the literature for a DHC at different Rayleigh numbers 

       𝑅𝑎        103       104       105       106 
de Vahl Davis [1] 1.118 2.243 4.519 8.799 
Relative Error (%) 0.26 0.44 3.2 0.73 

Barakos and Mitsoulis [13] 1.114 2.245 4.510 8.806 
Relative Error (%) 0.62 0.35 3.2 0.65 

Dixit and Babu [14] 1.118 2.256 4.519 8.817 
Relative Error (%) 0.26 0.13 4.8 0.75 

Present study 1.121 2.253 4.673 8.864 
Grid size  83² 83² 103² 103² 

 

 

Fig. 2. Comparison of the streamlines and isotherms between the present results and that of Brakos et al. [13] at various 
Rayleigh numbers 

5 RESULTS AND DISCUSSION 

In the present study, numerical results of natural convection fluid flow and heat transfer of Cu-water nanofluid inside a 
square enclosure with a cold block are investigated. The results are generated for different pertinent dimensionless groups: 
the height of the obstacle  (0.125 ≤ 𝐻 ≤ 0.5), Rayleigh number (103  ≤  𝑅𝑎 ≤  106), and nanoparticles volume fraction 
(0 ≤  𝜑 ≤  0.2), while the width of the block 𝑤 is fixed at 0.25𝐿 and the Prandtl number of the pure water (𝑃𝑟 = 6.2).  

Fig. 3 displays effects of cooler dimensionless height on the streamlines and isotherms when 𝑅𝑎 = 104. We can see in Fig. 
3(a) that the flow structure is organized into one convection cell on right side of the enclosure. isotherms shown in Fig. 3(b) 
are uniformly distributed which indicate that the heat transfer in the enclosure was governed mainly by the conduction 
mode. By increasing cooler height from  𝐻 = 0.25  to  𝐻 = 0.5 , the central core of the convection cell changes significantly. 
By increasing  Rayleigh number from  104  to  106, it was observed in Fig. 4(b) that  the patterns of isotherms became 
complex which means that the heat transfer mechanism is changing from conduction to the convection. By increasing the 
cooler dimensionless height, we can see clearly in Fig. 4(a) that the rotating eddy became with two inner vortices due to the 
stronger convection effects.  
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Fig. 3. Effect of varying cooler height on (a) the streamlines and (b) isotherms (𝑹𝒂 =  𝟏𝟎𝟒, 𝑾 =  𝟎. 𝟐𝟓) with case of pure fluid 
(dashed line) and Cu-water (solid line) nanofluid with 𝝋 = 𝟎. 𝟏 

 

 
 

Fig. 4. Effect of varying cooler height on (a) the streamlines and (b) isotherms (𝑹𝒂 =  𝟏𝟎𝟔, 𝑾 =  𝟎. 𝟐𝟓) with case of pure 

fluid (dashed line) and Cu-water (solid line) nanofluid with 𝝋 = 𝟎. 𝟏 

Fig. 5. Variation of  𝑵𝒖̅̅ ̅̅
𝒕𝒐𝒕  for different Rayleigh numbers and volume fraction of the nanoparticles  (𝑯 = 𝟎. 𝟓) 
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Fig. 6. Effect of the cooler height on  𝑵𝒖̅̅ ̅̅
𝒕𝒐𝒕  for different volume fraction of the nanoparticles (𝑹𝒂 = 𝟏𝟎𝟑) 

The effect of the concentration of nanoparticles on  𝑁𝑢̅̅ ̅̅
𝑡𝑜𝑡  is illustrated in Fig. 5 for various  𝑅𝑎 in the case of the cooler 

height  𝐻 = 0.5 . It is seen that the heat transfer is always improved by increasing volume fraction of the nanoparticles, but 

the rate of improvement depends on 𝑅𝑎. By increasing Rayleigh number, the heat transfer rate increases. We can  see also 

from the curves of Fig. 5 that  𝑁𝑢̅̅ ̅̅
𝑡𝑜𝑡  displays a quasi-linear variation with the parameter 𝜑. This quasi-linearity was also 

remarked for the other cooler heights (not presented here). 

Fig. 6 shows the effect of the cooler height on  𝑁𝑢̅̅ ̅̅
𝑡𝑜𝑡  for different volume fraction of the nanoparticles in the case of 

𝑅𝑎 = 103. This is evident in Fig. 6 as the height of the cooler increases; the total mean Nusselt number  ( 𝑁𝑢̅̅ ̅̅
𝑡𝑜𝑡) is 

augmented due to additional surface area offered by the cooler for heat transfer communication. 

6 HEAT TRANSFER CORRELATION 

The total mean Nusselt number  ( 𝑁𝑢̅̅ ̅̅
𝑡𝑜𝑡) is correlated over a wide range of design parameters  employed in this 

investigation, such as the height of the obstacle  (0.125 ≤ 𝐻 ≤ 0.5), Rayleigh number (103  ≤  𝑅𝑎 ≤  106), and 

nanoparticles volume fraction (0 ≤  𝜑 ≤  0.2), These correlations can be mathematically expressed as follows: 

 𝑁𝑢̅̅ ̅̅
𝑡𝑜𝑡 = 20.803 𝜑 + 2.178 𝑅𝑎0.161   

Where 𝐻 is fixed at 0.5 and  the confidence coefficient for the above equation is 𝑅² =  98.6%. 

 𝑁𝑢̅̅ ̅̅
𝑡𝑜𝑡 = (1.482 + 6.676 𝜑 + 34.367 𝜑2)𝐻 + 15.963 𝜑 + 5.873  

Where 𝑅𝑎 is fixed at 1000 and the confidence coefficient for the above equation is 𝑅² =  99.1%. 

7 CONCLUSION 

Natural convection heat transfer of nanofluid (Cu-water) in a square enclosure having a cold obstacle. was studied 
numerically for various design parameters such as the height of the obstacle (𝐻), Rayleigh number (𝑅𝑎) and nanoparticles 
volume fraction (𝜑). According to the presented results, the following conclusions are drawn: 

 In the wide range of design parameters, the heat transfer is improved by increasing both the Rayleigh number (𝑅𝑎)  

and the nanoparticle volume fraction(𝜑). 

 The height of the cooler has significant effect on flow, temperature fields, and heat transfer 

 By increasing the height of the cooler the total mean Nusselt number  ( 𝑁𝑢̅̅ ̅̅
𝑡𝑜𝑡) is augmented due to additional surface 

area offered by the cooler for heat transfer communication. 

 The total mean Nusselt number displays a quasi-linear variation with the parameter 𝜑 and  𝐻 . 

 The heat transfer correlations show that, the height of the obstacle, Rayleigh number and nanoparticles volume 

fraction increased the total mean Nusselt number. 
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NOMENCLATURE 

𝐶𝑝 specific heat, 𝐽𝑘𝑔−1𝐾−1 

𝑔 gravitational acceleration, 𝑚 𝑠−2 
ℎ height of the cold block, 𝑚 
𝐻 non-dimensional height of the cold 
𝑘 thermal conductivity, 𝑊 𝑚−1𝐾−1 
𝐿 enclosure height, m 
𝑁𝑢̅̅ ̅̅

𝑡𝑜𝑡 total mean Nusselt number, defined in Eq. (19) 
𝑃𝑟 Prandtl number (= 𝜈𝑓/𝛼𝑓) 

𝑅𝑎 Rayleigh number (= 𝑔𝛽𝑓(𝑇ℎ − 𝑇𝑐)𝐿3/𝛼𝑓𝜈𝑓) 

𝑇 temperature, 𝐾 
�̃� time, s 
𝑡 dimensionless time  (�̃�𝛼𝑓/𝐿²) 

�̃�, �̃� velocity components, 𝑚𝑠−1 
𝑢, 𝑣 dimensionless velocity components 
𝑤 dimensional width of the cold block   
𝑊 dimensionless width of the cold block   
�̃�, �̃� Cartesian coordinates, 𝑚 
𝑥, 𝑦 dimensionless Cartesian coordinates  

Greek symbols 

𝛽 thermal expansion coefficient, 𝐾−1 
𝜃 dimensionless temperature 
𝜇 dynamic viscosity, 𝑘𝑔 𝑚−1𝑠−1 
𝜈 kinematic viscosity, 𝑚2𝑠−1 
𝜌 density,𝑘𝑔𝑚−3 
𝜑 volume fraction of the nanoparticles 

�̃� dimensional stream function 𝑚2𝑠−1 
𝜓 dimensionless stream function 
�̃� dimensionless vorticity 
𝜔 dimensional vorticity (𝑠−1) 

Subscripts 

𝑐 cold 
𝑓 fluid 
ℎ hot 
𝑛𝑓 nanofluid 
𝑠 solid nanoparticles 
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