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ABSTRACT: This paper presents a numerical method called Laplace Transform Series Decomposition Method (LTSDM) for 

solving fifth and sixth order boundary value problems in a finite domain with two point boundary conditions is presented. 

The method has to do with the combination of Laplace Transform method, series expansion and Adomian polynomial. The 

numerical results obtained using LTSDM are compared with the exact solutions, Differential Transform and Adomian 

Decomposition Methods. The results showed that the method is quite accurate, reliable, powerful, efficient, and is practically 

well suited for use in the problems considered.    
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1 INTRODUCTION 

A class of characteristic-value problems of higher order is known to arise in hydrodynamic and hydro magnetic stability 

[1], [2]. Fifth-order boundary value problems arise in the mathematical modeling of viscoelastic flows [3]. Sixth-order 

boundary value problems arise in modeling of a dynamo action in some stars [4], and in astrophysics; the narrow convicting 

layers bounded by stable layers which are believed to surround A-type stars can also be modeled by sixth-order boundary 

value problems [5]. 

Fifth and sixth order boundary value problems have been investigated by many researchers because of their 

mathematical importance and the potential for applications in hydrodynamic and hydro magnetic stability. Fifth and sixth 

order linear and nonlinear problems were solved in [6], [7] using Differential Transform Method, decomposition method was 

used in [6], [8], Noor et al. [9] used variational iteration method and homotopy perturbation method was used in [10]. This 

work presents Laplace series decomposition method for solving nonlinear fifth and sixth order boundary value problems. The 

accuracy and efficiency of the method was tested and established by comparing the numerical solutions obtained with the 

exact and the existing results using Differential Transform and Adomian Decomposition methods [6].  

2 THE METHODS 

Consider the nth order boundary value problem of the form 

(1) b,<x<0),,...,,,,()( 1−′′′= nn yyyyxfxy  

With the initial boundary conditions 

)2(.0),( =
dx

dy
yB  

Applying the Laplace transformation on both sides of (1) 
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(3) )],,...,,,,([)]([ 1−′′′= nn yyyyxfLxyL  

Using the differentiation property of the Laplace transform, we have  

)4()],...,,,,([)0)((...)0)(()0)(()]([ 11)2()1( −−−− ′′′=−−−− nnnnn yyyyxfLysysDyDxyLs  

)5()],...,,,([
1

))0)((...)0)(()0)(((
1

)]([ 11)2()1( −−−− ′++++= n
n

nnn
n

yyyxfL
s

ysysDyD
s

xyL  

The standard Laplace transformation method defines the solution  )(xy  by the series 

∑
∞

=

=
0

)6(),()(
n

n xyxy  

and the nonlinear term is decompose as 

∑
∞

=

=
0

)7()()(
n

n yAxNy   

Where  

nA  are the special polynomials called the  Adomian polynomials of 0y , 1y , 2y , 3y ,…, ny   define by Wazwaz in [11] as 
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Substitute (6) and (7) into eq. (5) to give 

)4()],...,,,,([)0)((...)0)(()0)(()]([ 11)2()1( −−−− ′′′=−−−− nnnnn yyyyxfLysysDyDxyLs  

)9()],...,,,([
1

))0)((...)0)(()0)(((
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)]([ 11)2()1(
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−−−−
∞

=

′++++=∑ n
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n yyyxfL

s
ysysDyD

s
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Using the condition in eq. (2), recursive relation )],...([)],([)],([ 210 xyLxyLxyL  are obtained. 

Taking the Laplace inverse of the recursive relation obtained resulted into the general solution 

)10(...)()()()( 3210 ++++= xyxyxyxyy  

3 NUMERICAL APPLICATION 

PROBLEM 1 

Consider the nonlinear equation of order three for fifth- order boundary value problem (BVP) 

( )3(5) ( ) ( ) , 0< <1 (11)xy x e y x x−=  

subject to the boundary conditions 

1 1

2 2
1 1 1

(0) 1, (0) , (0) , (1) , (1) (12)
2 4 2

y y y y e y e′ ′′ ′= = = = =  

since problem (1) is an initial boundary value problem, an assumption is made that 

(0) , (0) (13)ivy a y b′′′ = =   
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Obtaining the series expansion of  
xe−

 and apply the LTDM, the general solution ( )y x  is obtained in terms of a and b  

with just two iteration using LTSDM, the boundary condition 

1

2(1)y e=  and 

1

2
1

(1)
2

y e′ =  are then imposed on ( )y x  in order 

to find the value of the constants as 0.1824450553a = and 0.3784200594b = −  

Table 1: Comparison of the results obtained by LTSDM with the Exact, Differential Transform Method (DTM) and Adomian 

Decomposition Method (ADM) for problem 1
 

X Exact DTM(N=18) ADM(N=18) LTSDM(N=18) DTM error ADM error STSDM 

error 

0.0 1 1 1 1 0 0 0 

0.1 1.051271096 1.051278920 1.051304388 1.051278915 7.8*10
-6 

3.3*10
-5

 7.8*10
-6

 

0.2 1.105170918 1.105220776 1.105376893 1.105220744 4.9*10
-5 

2.1*10
-4

 4.9*10
-5

 

0.3 1.161834243 1.161964144 1.162354697 1.161964053 1.3*10
-4

 5.2*10
-4

 1.3*10
-4

 

0.4 1.221402759 1.221630872 1.222288170 1.221630695 2.3*10
-4

 8.9*10
-4

 2.3*10
-4

 

0.5 1.284025416 1.284337420 1.285197259 1.284337148 3.1*10
-4

 1.2*10
-3

 3.1*10
-4

 

0.6 1.349858808 1.350206775 1.351121795 1.350206432 3.5*10
-4

 1.2*10
-3

 3.5*10
-4

 

0.7 1.419067549 1.419381004 1.420165281 1.419380653 3.1*10
-4

 1.1*10
-3

 3.1*10
-4

 

0.8 1.491824698 1.492034431 1.492531616 1.492034158 2.1*10
-4

 7.1*10
-4

 2.1*10
-4

 

0.9 1.568312185 1.568387480 1.568554250 1.568387370 7.5*10
-4

 2.4*10
-4

 7.5*10
-4

 

1.0 1.648721271 1.648721270 1.648717133 1.648721271 1.1*10
-9 

4.1*10
-6

 0 

PROBLEM 2 

Consider the fourth -order nonlinear for fifth- order boundary value problem (BVP) 

( )4(5) ( ) ( ) , 0< <1 (14)xy x e y x x=  

subject to the boundary conditions 

1 1

3 3
1 1 1

(0) 1, (0) , (0) , (1) , (1) (15)
3 9 3

y y y y e y e
− −

′ ′′ ′= = − = = = −  

Using the same approach used in problem (1) to obtain the general solution of problem (2)  

Table 2: Comparison of the results obtained by LTSDM with the Exact, Differential Transform Method (DTM) and Adomian 

Decomposition Method (ADM) for problem 2
 

X Exact DTM(N=18) ADM(N=18) LTSDM(N=18) DTM error ADM error LTSDM 

error 

0.0 1 1 1 1 0 0 0 

0.1 0.967216006 0.9672221453 0.9667810534 0.9672221397 6.0*10
-6 

4.4*10
-4

 6.0*10
-6

 

0.2 0.9355069849 0.9672221453 0.932179974 0.9355449423 3.2*10
-2 

3.3*10
-3

 3.7*10
-5

 

0.3 0.9048374181 0.9049350590 0.8944787522 0.9049349480 9.8*10
-5

 1.0*10
-2

 9.8*10
-5

 

0.4 0.8751733191 0.8753424236 0.8533754418 0.8753422057 1.7*10
-4

 2.2*10
-2

 1.7*10
-4

 

0.5 0.8464817250 0.8467098288 0.8103487343 0.8467094953 2.3*10
-4

 3.6*10
-2

 2.3*10
-4

 

0.6 0.8187307532 0.8189816371 0.7687007110 0.8189812180 2.5*10
-4

 5.0*10
-2

 2.5*10
-4

 

0.7 0.7918895662 0.7921124409 0.7332405365 0.7921120107 2.2*10
-4

 5.8*10
-2

 2.2*10
-4

 

0.8 0.7659283385 0.7660753950 0.7095695543 0.7660750653 1.4*10
-4

 5.6*10
-2

 1.5*10
-4

 

0.9 0.7408182206 0.7408702826 0.7029247972 0.7408701440 5.2*10
-5

 3.8*10
-2

 5.2*10
-5

 

1.0 0.7165313106 0.7165313107 0.7165313263 0.7165313106 1.1*10
-10 

1.6*10
-8

 0 
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PROBLEM 3 

Consider the fourth -order nonlinear for fifth- order boundary value problem (BVP) 

( )3(6) ( ) ( ) , 0< <1 (14)xy x e y x x=  

subject to the boundary conditions 

1 1 1

2 2 2
1 1 1 1

(0) 1, (0) , (0) , (1) , (1) , (1) (15)
2 4 2 4

y y y y e y e y e
− − −

′ ′′ ′ ′′= = − = = = − =  

Following the same approach used in problem (1) the general solution of problem (3) is also obtained  

Table 3: Comparison of the results obtained by LTSDM with the Exact, Differential Transform Method (DTM) and Adomian 

Decomposition Method (ADM) for problem 3
 

X Exact DTM(N=18) ADM(N=18) LTSDM(N=18) DTM error ADM error LTSDM 

error 

0.0 1 1 1 1 0 0 0 

0.1 0.9512294245 0.9492075127 0.9492075127 0.9512286231 2.0*10
-3 

2.0*10
-3

 8.0*10
-7

 

0.2 0.9048374181 0.8916268943 0.8916268943 0.9048329476 1.3*10
-2 

1.3*10
-2

 4.5*10
-6

 

0.3 0.8607079765 0.8251427077 0.8251427077 0.8606979420 3.6*10
-2

 3.6*10
-2

 1.0*10
-5

 

0.4 0.8187307532 0.7534730280 0.7534730280 0.8187158824 6.5*10
-2

 6.5*10
-2

 1.5*10
-5

 

0.5 0.7788007831 0.6839803183 0.6839803183 0.7787840953 9.5*10
-2

 9.5*10
-2

 1.7*10
-5

 

0.6 0.7408182206 0.6254839642 0.6254839642 0.7408035616 1.2*10
-1

 1.2*10
-1

 1.5*10
-5

 

0.7 0.7046880897 0.7046783358 0.5860748693 0.7046783388 9.8*10
-6

 1.2*10
-1

 9.8*10
-6

 

0.8 0.6703200461 0.6703157625 0.5709325210 0.6703157639 4.3*10
-6

 1.0*10
-2

 4.3*10
-6

 

0.9 0.6376281517 0.6376273947 0.5801448253 0.6376273949 8.0*10
-7

 5.7*10
-2

 7.6*10
-7

 

1.0 0.6065306598 0.6065306599 0.6065306590 0.6065306597 1.0*10
-10 

8.0*10
-10

 2.7*10
-12

 

4 CONCLUSION 

The new technique, Laplace Transform Series Decomposition Method (LTSDM) was used to solve fifth and sixth order 

nonlinear boundary value problems.  All the computational results obtained from the three problems considered using 

LTSDM are made possible using Maple 18, and the numerical results obtained are in good agreement with the exact solution 

even with just few iteration. Comparison of LTSDM with other numerical methods such as the Differential Transform Method 

and Adomian Decomposition Method shows that Laplace Transform Series Decomposition Method is efficient, reliable, 

powerful and accurate for solving nonlinear higher order in a finite domain with two point boundary conditions of any form.   
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